Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990139312> ?p ?o ?g. }
- W1990139312 endingPage "46" @default.
- W1990139312 startingPage "29" @default.
- W1990139312 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 467:29-46 (2012) - DOI: https://doi.org/10.3354/meps09963 Depth distribution of larvae critically affects their dispersal and the efficiency of marine protected areas Hanna Corell1,*, Per-Olav Moksnes2, Anders Engqvist3, Kristofer Döös1, Per R. Jonsson4 1Department of Meteorology, Stockholm University, Stockholm 10691, Sweden 2Department of Biology and Environmental Sciences, University of Gothenburg, Box 461, Göteborg 40530, Sweden 3Department of Land and Water Resources Engineering, Royal Institute of Technology, Stockholm 10044, Sweden 4Tjärnö Marine Biological Laboratory, Department of Biology and Environmental Sciences, University of Gothenburg, Strömstad 45296, Sweden *Email: hanna.corell@misu.su.se ABSTRACT: This study aims to improve estimates of dispersal by including information on larval traits, and in particular to explore how larval depth distribution affects connectivity and MPA (marine protected area) functionality in the Baltic Sea. A field survey showed that both invertebrates and fish differed in their larval depth distribution, ranging from surface waters to >100 m. A biophysical model of larval dispersal in the Baltic Sea showed that decreased depth distribution increased average dispersal distance 2.5-fold, decreased coastal retention and local recruitment, and substantially increased connectivity. Together with pelagic larval duration (PLD), depth distribution explained 80% of total variation in dispersal distance, whereas spawning season, and geographic and annual variations in circulation had only marginal effects. Median dispersal distances varied between 8 and 46 km, with 10% of simulated trajectories dispersing 30 to 160 km depending on drift depth and PLD. In the Baltic Sea, the majority of shallow Natura 2000 MPAs are <8 km in diameter. In the present study, only 1 of the 11 assessed larval taxa would have a recruitment >10% within MPAs of this size. Connectivity between MPAs was expected to be low for most larval trait combinations. Our simulations and the empirical data suggest that the MPA size within the Natura 2000 system is considerably below what is required for local recruitment of most sessile invertebrates and sedentary fish. Future designs of MPA networks would benefit from spatially explicit biophysical models that consider dispersal and connectivity for complex circulation patterns and informed larval traits. KEY WORDS: Larval dispersal · Pelagic duration time · Vertical distribution · Field survey · Biophysical model · Hydrodynamics · Marine protected area · Conservation biology Full text in pdf format Supplementary material PreviousNextCite this article as: Corell H, Moksnes PO, Engqvist A, Döös K, Jonsson PR (2012) Depth distribution of larvae critically affects their dispersal and the efficiency of marine protected areas. Mar Ecol Prog Ser 467:29-46. https://doi.org/10.3354/meps09963 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 467. Online publication date: October 25, 2012 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2012 Inter-Research." @default.
- W1990139312 created "2016-06-24" @default.
- W1990139312 creator A5027679859 @default.
- W1990139312 creator A5033274897 @default.
- W1990139312 creator A5041592614 @default.
- W1990139312 creator A5043278285 @default.
- W1990139312 creator A5063554675 @default.
- W1990139312 date "2012-10-25" @default.
- W1990139312 modified "2023-09-27" @default.
- W1990139312 title "Depth distribution of larvae critically affects their dispersal and the efficiency of marine protected areas" @default.
- W1990139312 cites W1966655385 @default.
- W1990139312 cites W1976228208 @default.
- W1990139312 cites W1982272399 @default.
- W1990139312 cites W1982344295 @default.
- W1990139312 cites W2001090722 @default.
- W1990139312 cites W2010481961 @default.
- W1990139312 cites W2011690045 @default.
- W1990139312 cites W2023064125 @default.
- W1990139312 cites W2023873882 @default.
- W1990139312 cites W2024124397 @default.
- W1990139312 cites W2028232676 @default.
- W1990139312 cites W2029358692 @default.
- W1990139312 cites W2030231734 @default.
- W1990139312 cites W2036389460 @default.
- W1990139312 cites W2036975006 @default.
- W1990139312 cites W2037139481 @default.
- W1990139312 cites W2043628533 @default.
- W1990139312 cites W2044147627 @default.
- W1990139312 cites W2044491518 @default.
- W1990139312 cites W2046753694 @default.
- W1990139312 cites W2054974764 @default.
- W1990139312 cites W2055402323 @default.
- W1990139312 cites W2067253669 @default.
- W1990139312 cites W2067804762 @default.
- W1990139312 cites W2069726082 @default.
- W1990139312 cites W2070690404 @default.
- W1990139312 cites W2071190351 @default.
- W1990139312 cites W2071224479 @default.
- W1990139312 cites W2072259275 @default.
- W1990139312 cites W2075913146 @default.
- W1990139312 cites W2078992396 @default.
- W1990139312 cites W2088552411 @default.
- W1990139312 cites W2090034662 @default.
- W1990139312 cites W2090904238 @default.
- W1990139312 cites W2092109045 @default.
- W1990139312 cites W2096408232 @default.
- W1990139312 cites W2103844417 @default.
- W1990139312 cites W2108543817 @default.
- W1990139312 cites W2109977549 @default.
- W1990139312 cites W2114141131 @default.
- W1990139312 cites W2116310878 @default.
- W1990139312 cites W2116733210 @default.
- W1990139312 cites W2122300845 @default.
- W1990139312 cites W2124565737 @default.
- W1990139312 cites W2131066909 @default.
- W1990139312 cites W2133564450 @default.
- W1990139312 cites W2140618008 @default.
- W1990139312 cites W2142927953 @default.
- W1990139312 cites W2143978078 @default.
- W1990139312 cites W2145975037 @default.
- W1990139312 cites W2147544844 @default.
- W1990139312 cites W2148675453 @default.
- W1990139312 cites W2150209016 @default.
- W1990139312 cites W2152438064 @default.
- W1990139312 cites W2152721892 @default.
- W1990139312 cites W2153357393 @default.
- W1990139312 cites W2157367008 @default.
- W1990139312 cites W2165469692 @default.
- W1990139312 cites W2166600639 @default.
- W1990139312 cites W2168174434 @default.
- W1990139312 cites W2174922334 @default.
- W1990139312 cites W2175906253 @default.
- W1990139312 cites W2322741178 @default.
- W1990139312 cites W2322881094 @default.
- W1990139312 cites W2328454750 @default.
- W1990139312 cites W2490088228 @default.
- W1990139312 cites W277513690 @default.
- W1990139312 cites W4213200627 @default.
- W1990139312 cites W4244862089 @default.
- W1990139312 cites W4249652984 @default.
- W1990139312 doi "https://doi.org/10.3354/meps09963" @default.
- W1990139312 hasPublicationYear "2012" @default.
- W1990139312 type Work @default.
- W1990139312 sameAs 1990139312 @default.
- W1990139312 citedByCount "53" @default.
- W1990139312 countsByYear W19901393122013 @default.
- W1990139312 countsByYear W19901393122014 @default.
- W1990139312 countsByYear W19901393122015 @default.
- W1990139312 countsByYear W19901393122016 @default.
- W1990139312 countsByYear W19901393122017 @default.
- W1990139312 countsByYear W19901393122018 @default.
- W1990139312 countsByYear W19901393122019 @default.
- W1990139312 countsByYear W19901393122020 @default.
- W1990139312 countsByYear W19901393122021 @default.
- W1990139312 countsByYear W19901393122022 @default.
- W1990139312 countsByYear W19901393122023 @default.
- W1990139312 crossrefType "journal-article" @default.
- W1990139312 hasAuthorship W1990139312A5027679859 @default.