Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990331386> ?p ?o ?g. }
- W1990331386 endingPage "350" @default.
- W1990331386 startingPage "343" @default.
- W1990331386 abstract "Background and purpose The planning process in radiotherapy (RT) typically involves the acquisition of a unique set of CT images – and eventually of functional images – which is used for delineation of target volumes (TV) and organs at risk (OAR) and for dose calculation. Restricting the delineation and dose calculation solely on pre-treatment images is an oversimplification as it is only a snapshot of the patient’s anatomy. The objectives of the present study were (1) to assess the consequences of anatomic modification in dose distribution for both TVs and OARs; (2) to assess the potential benefit of adaptive strategies using Helical Tomotherapy (HT); and (3) to compare CT-based and FDG-PET-based adaptive planning strategies. Materials and methods Ten patients with H&N SCC were imaged before and during concomitant chemo-RT using CT and FDG-PET acquisition after a mean dose of 14.2, 24.5, 35.0 and 44.9 Gy. Simultaneous integrated boost IMRT planning was performed using HT. We compared (1) the planned dose distribution, (2) the delivered dose distributions that took into account impact of anatomical modifications on dose distribution, (3) the adaptive dose distributions after replanning to take into account the anatomic modifications and the anatomic or functional GTV shrinkage. Results There was an increase between the planned and the delivered high dose volumes, which correlated with the slope of the GTV shrinkage. The adaptive high dose volumes were significantly smaller than the delivered ones. The difference between the adaptive and the delivered high dose volume also correlated with the slope of the GTV shrinkage. For both parotid glands combined, the delivered Dmean showed a statistical trend for an increase of 4.4% compared to the planned Dmean. For the ipsilateral parotid glands, there was a correlation between the Dmean gain and the slope of the GTV shrinkage when an adaptive planning was used. For the oral cavity, the adaptive Dmean was 10% smaller than the delivered ones. For the PRV around the spinal cord, there was an increase of about 4.5% between the delivered and the planned D2%. The adaptive planning translated into a decrease in D2% of 7.2%. The differences between the delivered and planned D2% and between the adaptive and the delivered D2% were correlated with the slope of the GTV shrinkage. For the CTVproph and PTVproph coverage, adaptive strategy induced a better dose conformation. No significant difference was observed in the various figures of merit between PET-based plan and CT-based isodose distributions. Conclusions The dose distribution that is actually delivered to patients significantly differs from what was planned because of anatomic modifications. Adaptive multi-modality IMRT is feasible in H&N tumors and could compensate and improve dose distribution. Some useful surrogate criteria or “flags” are, however, needed to identify patients who might benefit from an adaptive strategy. The optimal adaptive strategy still needs to be defined and prospective studies will have to be conducted to address the safety and the clinical impact of such approaches on patient outcome." @default.
- W1990331386 created "2016-06-24" @default.
- W1990331386 creator A5007892780 @default.
- W1990331386 creator A5025954031 @default.
- W1990331386 creator A5051493122 @default.
- W1990331386 creator A5088821969 @default.
- W1990331386 date "2011-12-01" @default.
- W1990331386 modified "2023-10-16" @default.
- W1990331386 title "Adaptive functional image-guided IMRT in pharyngo-laryngeal squamous cell carcinoma: Is the gain in dose distribution worth the effort?" @default.
- W1990331386 cites W1969719900 @default.
- W1990331386 cites W1971080739 @default.
- W1990331386 cites W1974237660 @default.
- W1990331386 cites W1975492311 @default.
- W1990331386 cites W1977452142 @default.
- W1990331386 cites W1979307122 @default.
- W1990331386 cites W1983632922 @default.
- W1990331386 cites W1995199951 @default.
- W1990331386 cites W1995792552 @default.
- W1990331386 cites W2005887998 @default.
- W1990331386 cites W2007326584 @default.
- W1990331386 cites W2012354979 @default.
- W1990331386 cites W2012363631 @default.
- W1990331386 cites W2015341124 @default.
- W1990331386 cites W2021461364 @default.
- W1990331386 cites W2022394093 @default.
- W1990331386 cites W2030023766 @default.
- W1990331386 cites W2040729395 @default.
- W1990331386 cites W2041898066 @default.
- W1990331386 cites W2046716077 @default.
- W1990331386 cites W2046775391 @default.
- W1990331386 cites W2052571624 @default.
- W1990331386 cites W2054736561 @default.
- W1990331386 cites W2054946224 @default.
- W1990331386 cites W2057599736 @default.
- W1990331386 cites W2060352663 @default.
- W1990331386 cites W2061565656 @default.
- W1990331386 cites W2067153290 @default.
- W1990331386 cites W2069243321 @default.
- W1990331386 cites W2070040050 @default.
- W1990331386 cites W2076761842 @default.
- W1990331386 cites W2078487508 @default.
- W1990331386 cites W2080004498 @default.
- W1990331386 cites W2080972692 @default.
- W1990331386 cites W2083629503 @default.
- W1990331386 cites W2087528748 @default.
- W1990331386 cites W2090933910 @default.
- W1990331386 cites W2094593756 @default.
- W1990331386 cites W2099104461 @default.
- W1990331386 cites W2101718780 @default.
- W1990331386 cites W2109915923 @default.
- W1990331386 cites W2111714525 @default.
- W1990331386 cites W2114364204 @default.
- W1990331386 cites W2117120702 @default.
- W1990331386 cites W2133286786 @default.
- W1990331386 cites W2136250561 @default.
- W1990331386 cites W2139389882 @default.
- W1990331386 cites W2141988766 @default.
- W1990331386 cites W2142504798 @default.
- W1990331386 cites W2143942491 @default.
- W1990331386 cites W2148517717 @default.
- W1990331386 cites W2149294014 @default.
- W1990331386 cites W2159676301 @default.
- W1990331386 cites W2168201175 @default.
- W1990331386 cites W4235748518 @default.
- W1990331386 doi "https://doi.org/10.1016/j.radonc.2011.06.011" @default.
- W1990331386 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21724283" @default.
- W1990331386 hasPublicationYear "2011" @default.
- W1990331386 type Work @default.
- W1990331386 sameAs 1990331386 @default.
- W1990331386 citedByCount "73" @default.
- W1990331386 countsByYear W19903313862012 @default.
- W1990331386 countsByYear W19903313862013 @default.
- W1990331386 countsByYear W19903313862014 @default.
- W1990331386 countsByYear W19903313862015 @default.
- W1990331386 countsByYear W19903313862016 @default.
- W1990331386 countsByYear W19903313862017 @default.
- W1990331386 countsByYear W19903313862018 @default.
- W1990331386 countsByYear W19903313862019 @default.
- W1990331386 countsByYear W19903313862020 @default.
- W1990331386 countsByYear W19903313862021 @default.
- W1990331386 countsByYear W19903313862022 @default.
- W1990331386 countsByYear W19903313862023 @default.
- W1990331386 crossrefType "journal-article" @default.
- W1990331386 hasAuthorship W1990331386A5007892780 @default.
- W1990331386 hasAuthorship W1990331386A5025954031 @default.
- W1990331386 hasAuthorship W1990331386A5051493122 @default.
- W1990331386 hasAuthorship W1990331386A5088821969 @default.
- W1990331386 hasConcept C126838900 @default.
- W1990331386 hasConcept C141071460 @default.
- W1990331386 hasConcept C142724271 @default.
- W1990331386 hasConcept C201645570 @default.
- W1990331386 hasConcept C2776713427 @default.
- W1990331386 hasConcept C2779384505 @default.
- W1990331386 hasConcept C2989005 @default.
- W1990331386 hasConcept C3019992690 @default.
- W1990331386 hasConcept C509974204 @default.
- W1990331386 hasConcept C71924100 @default.
- W1990331386 hasConceptScore W1990331386C126838900 @default.