Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990385239> ?p ?o ?g. }
- W1990385239 endingPage "1574" @default.
- W1990385239 startingPage "1556" @default.
- W1990385239 abstract "Pacing and Clinical ElectrophysiologyVolume 18, Issue 8 p. 1556-1574 Basic Concepts in Cellular Cardiac Electrophysiology: Part I: Ion Channels, Membrane Currents, and the Action Potential DAVID W. WHALLEY, DAVID W. WHALLEY From Duke University Medical Center, Durham, North CarolinaSearch for more papers by this authorDAVID J. WENDT, DAVID J. WENDT From Duke University Medical Center, Durham, North CarolinaSearch for more papers by this authorAUGUSTUS O. GRANT, Corresponding Author AUGUSTUS O. GRANT From Duke University Medical Center, Durham, North CarolinaAddress for reprints: Augustus O. Grant. M.D., Ph.D., Box 3504, Duke Medical Center. Durham. NC 27706. Fax: (919) 681-8978.Search for more papers by this author DAVID W. WHALLEY, DAVID W. WHALLEY From Duke University Medical Center, Durham, North CarolinaSearch for more papers by this authorDAVID J. WENDT, DAVID J. WENDT From Duke University Medical Center, Durham, North CarolinaSearch for more papers by this authorAUGUSTUS O. GRANT, Corresponding Author AUGUSTUS O. GRANT From Duke University Medical Center, Durham, North CarolinaAddress for reprints: Augustus O. Grant. M.D., Ph.D., Box 3504, Duke Medical Center. Durham. NC 27706. Fax: (919) 681-8978.Search for more papers by this author First published: August 1995 https://doi.org/10.1111/j.1540-8159.1995.tb06742.xCitations: 21 David W. Whalley is an Overseas Research Fellow of the National Heart Foundation ot Australia. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References 1 Powell T, Twist VW. A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and a tolerance to calcium. Biochem Biophys Res Comm 1976; 72: 327– 333. 2 Hamill OP, Marty A, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cell and cell-free membrane patches. Pflugers Arch 1981; 391: 85– 100. 3 Catterall WA. Structure and function of voltage-sensitive ion channels. Science 1988; 242: 50– 61. 4 Catterall WA. Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev 1992; 72: 515– 548. 5 Brown AM, Lee KS, Powell T. Voltage clamp and internal perfusion of single rat heart muscle cells. J Physiol (Lond) 1981; 318: 455– 477. 6 Hille B. Ionic channels of excitable membranes. Sunderland Sinauer Assoc., Inc., 1984, pp. 1– 19. 7 Armstrong CM. Sodium channels and gating currents. Physiol Rev 1981; 61: 644– 683. 8 Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve, J Physiol (Lond) 1952; 117: 500– 544. 9 Patlak JB, Ortiz M. Slow currents through single sodium channels of adult rat heart. J Gen Physiol 1985; 86: 89– 104. 10 Brown AM. Ion channels as G protein effectors. NIPS 1991; 6: 158– 161. 11 Nichols CG, Lederer WJ. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol 1991; 261: H1675– H1686. 12 Cohen SA, Barchi RL. Voltage-dependent sodium channels. Internal Rev Cytol 1993; 137C: 55– 103. 13 Philipson LH, Miller RJ. A small K+ channel looms large. TIPS 1992; 13: 8– 11. 14 Freeman LC, Kass RS. Expression of a minimal K+ channel protein in mammalian cells and immunolocalization in guinea pig heart. Circ Res 1993; 73: 968– 973. 15 Po S, Roberds S, Snyders DJ, et al. Heteromultimeric assembly of human potassium channels. Molecular basis of a transient outward current Circ Res 1993; 72: 1326– 1336. 16 Isom LL, De Jongh KS, Patton DE, et al. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science 1992; 256: 839– 842. 17 Stuehmer W, Conti F, Suzuki H, et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 1993; 339: 597– 603. 18 Satin J, Kyle JW, Chen M, et al. A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science 1992; 256: 1202– 1205. 19 Backx PH, Yue DT, Lawrence JH, et al. Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science 1992; 257: 248– 251. 20 Noda M, Suzuki S, Numa S, et al. A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett 1989; 259: 213– 216. 21 Hsu H, Huang X-cY, Karschin A, et al. Slow and incomplete inactivations of voltage-gated channels dominate encoding in synthetic neurons. Biophys J 1993; 65: 1196– 1206. 22 Gadsby DC, Kimura J, Noma A. Voltage-dependence of Na/K pump current in isolated heart cells. Nature (Lond) 1985; 315: 63– 65. 23 Hill JL, Gettes LS. Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation 1980; 61: 768– 778. 24 Gettes LS, Renter H. Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J Physiol (Lond) 1974; 240: 703– 724. 25 Weidmann S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Fhysiol (Lond) 1955; 127: 213– 224. 26 Sheets MF, Hanck DA. Nonlinear relation between Vmax and INa in canine cardiac Purkinje cells. Circ Res 1988; 63: 386– 398. 27 Cohen CJ, Bean BP, Tsien RW. Maximum upstroke velocity as an index of available sodium conductance. Circ Res 1984; 54: 636– 651. 28 Coraboeuf E, Carmeliet E. Existence of two transient outward currents in sheep cardiac Purkinje fibers. Pflugers Arch 1982; 392: 352– 359. 29 Tseng G-N, Hoffman BF. Two components of transient outward current in canine ventricular myocytes. Circ Res 1989; 64: 633– 647. 30 Fermini B, Wang Z, Duan D, et al. Differences in rate dependence of transient outward current in rabbit and human atrium. Am J Physiol 1992; 263: H1747– H1754. 31 Zygmunt AC, Gibbons WR. Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res 1991; 68: 424– 437. 32 Litovsky SH, Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 1988; 62: 116– 126. 33 Harvey RD, Clark CO, Hume JR. A chloride current in mammalian cardiac myocytes: Novel mechanism for autonomic regulation of action potential duration and resting membrane potential. J Gen Physiol 1990; 95: 1077– 1102. 34 Bean BP. Two kinds of calcium channels in canine atrial cells: Differences in kinetics, selectivity and pharmacology. J Gen Physiol 1985; 86: 1– 31. 35 Eisner DA, Lederer WT. Na-Ca exchange: Stoichiometry and electrogenicity. Am J Physiol 1985; 248: C189– C202. 36 Wasserstrom JA, Salata JJ. Basis for tetrodotoxin and lidocaine effects on action potentials in dog ventricular myocytes. Am J Physiol 1988; 254: H1157– H1166. 37 Yue DT, Marban E. A novel cardiac potassium channel that is active and conductive at depolarized potentials. Pflugers Arch 1988; 413: 127– 133. 38 Colatsky TJ, Follmer CH, Starmer CF. Channel specificity in antiarrhythmic drug action. Mechanism of potassium channel block and its role in suppressing and aggravating cardiac arrhythmias. Circulation 1990; 82: 2235– 2242. 39 Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K4 current. J Gen Physiol 1990; 96: 195– 215. 40 Carmeliet E. Voltage- and time-dependent block of the delayed K+ current in cardiac myocytes by dofetilide. J Pharmacol Exp Ther 1992; 262: 809– 817. 41 Giles WR, Imaizumi Y. Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol (Lond) 1988; 405: 123– 145. 42 Hume JR, Uehara A.. Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes. J Physiol (Lond) 1985; 368: 525– 544. 43 Heidbuchel H, Vereecke J, Carmeliet E. Three different potassium channels in human atrium. Circ Res 1990; 66: 1277– 1286. 44 Escande D, Coulombe A, Faivre J-F, Deroubaix E, Coraboeuf E. Two types of transient outward currents in adult human atrial cells. Am J Physiol 1987; 252: H843– H850. 45 Irisawa H, Brown HF, Giles W. Cardiac pacemaking in the sinoatrial node. Physiol Rev 1993; 73: 197– 227. 46 Campbell DL, Rasmusson RL, Strauss HC. Ionic current mechanisms generating vertebrate primary cardiac pacemaker activity at the single cell level: An integrative view. Ann Rev Physiol 1992; 54: 279– 302. 47 Hirst GDS, Edwards FR, Bramich NJ, et al. Neural control of cardiac pacemaker potentials. NIPS 1991; 6: 185– 190. 48 Foster M, Dew-Smith AG. The effects of constant current on the heart. J Anat Physiol 1876; 10: 735– 771. 49 Katzung B. Electrically induced automaticity in ventricular myocardium. Life Sciences 1974; 14: 1133– 1140. 50 Roden DM, Hoffman B. Action potential prolongation and induction of abnormal automaticity by low quinidine concentrations in canine Purkinje fibers. Circ Res 1985; 56: 857– 867. 51 Starmer CF, Grant AO. Phasic ion channel blockade: A kinetic and parameter estimation procedure. Mol Pharmacol 1985; 28: 348– 356. 52 Wit AL, Rosen MR. Afterdepolarizatinns and triggered activity: Distinction from automaticity as an arrhythmogenic mechanism. In HA Fozzard, RB Jennings. E Haber, et al. (eds.): The Heart and Cardiovascular System. New York , NY , Raven Press, 1992, pp. 2113– 2163. 53 Arnsdorf MF. Arnsdorf's paradox. J Cardiovasc Electrophysiol 1990; 1: 42– 52. 54 Arnsdorf MF. Basic understanding of electrophysiological actions of antiarrhythmic drugs: Sources, sinks and matrices of information. Med Clin North Am 1984; 68: 1247– 1280. 55 Kleber AG, Riegger CB. Electrical constants of arterially perfused rabbit papillary muscle. J Physiol (Lond) 1987; 385: 307– 324. 56 Weidmann S. Passive properties of cardiac fibers. In MR Rosen, MJ Janse, AL Wit (eds.): Cardiac Electrophysiology: A Textbook. Mount Kisco , NY , Futura Publishing Co., Inc., 1990, pp. 29– 35. 57 Fozzard HA, Schoenberg M. Strength-duration curves in cardiac Purkinje fibres: Effects of liminal length and charge distribution, J Physiol (Lond) 1972; 266: 593– 618. 58 Dorninguez G, Fozzard HA. Influence of extracellular K + concentration on cable properties and excitability of sheep cardiac Purkinje fibers. Circ Res 1970; 26: 565– 574. 59 Fozzard HA. The roles of membrane potential and inward Na+ and Ca2+ currents in determining conduction. In MR Rosen, MJ Janse, AL Wit (eds.): Cardiac Electrophysiology: A Textbook. Mount Kisco , NY , Futura Publishing Co., Inc., 1990, pp. 415– 425. 60 Peon J, Ferrier GR, Moe GK. The relationship of excitability to conduction velocity in canine Purkinje tissue. Circ Res 1978; 43(1): 125– 135. 61 Fozzard HA. Conduction of the action potential. In RM Berne (ed.): Handbook of Physiology Section 2. The Cardiovascular System, Vol 1. Bethesda , MD , Am Physiol Soc, 1979, pp. 335– 356. 62 Fozzard HA, Arnsdorf MF. Cardiac electrophysiology. In HA Fozzard, RB Jennings. E Haber, et al. (eds.): The Heart and Cardiovascular System. New York , NY , Raven Press, 1992, pp. 63– 98. 63 Spray DC, Bennett MVL. Physiology and Pharmacology of gap junctions. Ann Rev Physiol 1985; 47: 281– 303. 64 Burt JM. Block of intercellular communication; Interaction of intracellular H + and Ca2 +. Am J Physiol (Cell Physiol 22) 1987; 253: C607– C612. 65 Veenstra RD. Physiological modulation of cardiac gap junction channels. J Cardiovasc Electrophysiol 1991; 2: 168– 189. 66 Gettes LS. Effects of ionic changes on impulse propagation. In MR Rosen, MJ Janse, AL Wit (eds.): Cardiac Electrophysiology: A Textbook. Mount Kisco . NY , Futura Publishing Co., Inc., 1990, pp. 459– 479. 67 Cettes LS, Cascio WE. Effect of acute ischemia on cardiac electrophysiology. In HA Fozzard, E Haber, RB Jennings, et al. (eds.): The Heart and Cardiovascular System. New York , NY , Raven Press, 1992, pp. 2021– 2054. 68 Kleber AG, Riegger CB, Janse MJ. Extracellular K + and H+ shifts in early ischemia: Mechanisms and relation to changes in impulse propagation, J Mol Cell Cardiol 1987; 19(Suppl. 5): 35– 44. 69 Kleber AG, Riegger CB, Janse MJ. Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle. Circ Res 1987; 61: 271– 279. 70 Cascio WE, Yan G-X, Kleber AG. Passive electrical properties, mechanical activity and extracellular potassium in arterially perfused and ischemic rabbit ventricular muscle. Circ Res 1990; 66: 1461– 1473. 71 Delmar M. Role of potassium currents on cell excitability in cardiac ventricular mvocytes. J Cardiovasc Electrophysiol 1992; 3: 474– 486. 72 Wit AL, Rosen MR. Cellular electrophysiology of cardiac arrhythmias. Mod Concepts Cardiovasc Dis 1981; 50: 1– 6. Citing Literature Volume18, Issue8August 1995Pages 1556-1574 ReferencesRelatedInformation" @default.
- W1990385239 created "2016-06-24" @default.
- W1990385239 creator A5010922814 @default.
- W1990385239 creator A5029698825 @default.
- W1990385239 creator A5073464131 @default.
- W1990385239 date "1995-08-01" @default.
- W1990385239 modified "2023-10-17" @default.
- W1990385239 title "Basic Concepts in Cellular Cardiac Electrophysiology: Part I: Ion Channels, Membrane Currents, and the Action Potential" @default.
- W1990385239 cites W100864357 @default.
- W1990385239 cites W1836738800 @default.
- W1990385239 cites W1963519545 @default.
- W1990385239 cites W1964586222 @default.
- W1990385239 cites W1964606508 @default.
- W1990385239 cites W1965425456 @default.
- W1990385239 cites W1975869151 @default.
- W1990385239 cites W1985146688 @default.
- W1990385239 cites W1985940938 @default.
- W1990385239 cites W1986473275 @default.
- W1990385239 cites W1992532194 @default.
- W1990385239 cites W1996437700 @default.
- W1990385239 cites W2006192148 @default.
- W1990385239 cites W2007562608 @default.
- W1990385239 cites W2009667219 @default.
- W1990385239 cites W2009996971 @default.
- W1990385239 cites W2010102364 @default.
- W1990385239 cites W2014175836 @default.
- W1990385239 cites W2021639214 @default.
- W1990385239 cites W2022262236 @default.
- W1990385239 cites W2023259743 @default.
- W1990385239 cites W2026798231 @default.
- W1990385239 cites W2053149385 @default.
- W1990385239 cites W2070676751 @default.
- W1990385239 cites W2070955119 @default.
- W1990385239 cites W2071293796 @default.
- W1990385239 cites W2074501443 @default.
- W1990385239 cites W2077036915 @default.
- W1990385239 cites W2078556968 @default.
- W1990385239 cites W2081278908 @default.
- W1990385239 cites W2083397218 @default.
- W1990385239 cites W2083985213 @default.
- W1990385239 cites W2084567238 @default.
- W1990385239 cites W2086360660 @default.
- W1990385239 cites W2092937587 @default.
- W1990385239 cites W2093297294 @default.
- W1990385239 cites W2095587732 @default.
- W1990385239 cites W2101822309 @default.
- W1990385239 cites W2106908845 @default.
- W1990385239 cites W2117765582 @default.
- W1990385239 cites W2121614682 @default.
- W1990385239 cites W2122176248 @default.
- W1990385239 cites W2128751597 @default.
- W1990385239 cites W2154446983 @default.
- W1990385239 cites W2157409331 @default.
- W1990385239 cites W2167744805 @default.
- W1990385239 cites W2255288257 @default.
- W1990385239 cites W2412145284 @default.
- W1990385239 cites W4232354019 @default.
- W1990385239 cites W4240877459 @default.
- W1990385239 cites W4252490913 @default.
- W1990385239 cites W995575730 @default.
- W1990385239 doi "https://doi.org/10.1111/j.1540-8159.1995.tb06742.x" @default.
- W1990385239 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7479177" @default.
- W1990385239 hasPublicationYear "1995" @default.
- W1990385239 type Work @default.
- W1990385239 sameAs 1990385239 @default.
- W1990385239 citedByCount "26" @default.
- W1990385239 countsByYear W19903852392017 @default.
- W1990385239 countsByYear W19903852392018 @default.
- W1990385239 countsByYear W19903852392019 @default.
- W1990385239 countsByYear W19903852392022 @default.
- W1990385239 countsByYear W19903852392023 @default.
- W1990385239 crossrefType "journal-article" @default.
- W1990385239 hasAuthorship W1990385239A5010922814 @default.
- W1990385239 hasAuthorship W1990385239A5029698825 @default.
- W1990385239 hasAuthorship W1990385239A5073464131 @default.
- W1990385239 hasConcept C121332964 @default.
- W1990385239 hasConcept C126322002 @default.
- W1990385239 hasConcept C146403970 @default.
- W1990385239 hasConcept C169760540 @default.
- W1990385239 hasConcept C170493617 @default.
- W1990385239 hasConcept C181911157 @default.
- W1990385239 hasConcept C185263204 @default.
- W1990385239 hasConcept C2780791683 @default.
- W1990385239 hasConcept C50254741 @default.
- W1990385239 hasConcept C61381695 @default.
- W1990385239 hasConcept C62520636 @default.
- W1990385239 hasConcept C71924100 @default.
- W1990385239 hasConcept C79743260 @default.
- W1990385239 hasConcept C86803240 @default.
- W1990385239 hasConceptScore W1990385239C121332964 @default.
- W1990385239 hasConceptScore W1990385239C126322002 @default.
- W1990385239 hasConceptScore W1990385239C146403970 @default.
- W1990385239 hasConceptScore W1990385239C169760540 @default.
- W1990385239 hasConceptScore W1990385239C170493617 @default.
- W1990385239 hasConceptScore W1990385239C181911157 @default.
- W1990385239 hasConceptScore W1990385239C185263204 @default.
- W1990385239 hasConceptScore W1990385239C2780791683 @default.
- W1990385239 hasConceptScore W1990385239C50254741 @default.