Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990481462> ?p ?o ?g. }
- W1990481462 endingPage "7543" @default.
- W1990481462 startingPage "7521" @default.
- W1990481462 abstract "At low temperatures and sufficient densities, free excitons in Si and Ge undergo simultaneous gas-liquid and insulator-metal transitions into droplets of electron-hole liquid. Some previous theoretical and experimental studies have suggested that, under certain values of density and temperature, there may be separate metal-insulator and liquid-gas transitions. In the present paper, we examine the difficult transcritical region for electron-hole liquid formation in unstressed Si using time- and space-resolved photoluminescence spectroscopy. Using the latest models for the luminescence of electron-hole plasma and small excitonic complexes (EC's), we have succeeded in characterizing the complicated luminescence spectra both above and below the liquid-gas critical temperature [${mathit{T}}_{mathit{c}}$(LG)ensuremath{approxeq}24.5 K] with a relatively small number of free parameters. Near the liquid-gas critical point the luminescence spectra are analyzed as contributions from four lines: the high-density electron-hole liquid (EHL), a lower-density electron-hole plasma (EHP), free excitons (FE's), and excitonic complexes. After a sufficient thermalization time, the temperature of all phases settles to a value indistinguishable from the lattice temperature. The line shapes of FE's and EC's are calculated using previously established parameters. Using the latest band-renormalization theory, the pair density of the plasma phases (EHL and EHP) determines both the position and the shape of the spectrum.Therefore the analysis of these complex spectra is reduced to five free parameters: A single parameter describing the intensity of the FE line (the intensity of the EC line shape is linked to that of the FE using an experimentally determined scaling relation), the intensities of the two plasma components EHL and EHP, and the pair densities of these two plasmas. These parameters are sufficient to characterize the spectra over a wide range of particle density and temperature. The EHP density obtained in this way is remarkably independent of temperature and particle density, providing evidence for a second condensed phase of electron-hole plasma. The condensed liquid has a density of about one-tenth that of the ground-state electron-hole liquid and is observed both above and below the EHL critical temperature. An excitonic phase diagram for silicon is described which includes two condensed plasmas. A triple point at 18.5 K is observed where the electron-hole liquid coexists with the lower-density condensed plasma (CP) and excitonic gas. Above this temperature the CP is observed at all temperatures up to a second critical point at 45ifmmodepmelsetextpmfi{}5 K. We also consider the hypothesis that the extra luminescence attributed to the CP is instead due to large excitonic complexes. Using the recently determined binding energies of large excitonic complexes and the measured gas volume, we conclude that the density of these species is too small to account for the observed luminescence." @default.
- W1990481462 created "2016-06-24" @default.
- W1990481462 creator A5028029947 @default.
- W1990481462 creator A5063447508 @default.
- W1990481462 date "1995-03-15" @default.
- W1990481462 modified "2023-10-16" @default.
- W1990481462 title "Time-resolved study of electron-hole plasmas near the liquid-gas critical point in Si: Evidence for a second condensed phase" @default.
- W1990481462 cites W1584730566 @default.
- W1990481462 cites W1965342273 @default.
- W1990481462 cites W1966765609 @default.
- W1990481462 cites W1971216340 @default.
- W1990481462 cites W1971484393 @default.
- W1990481462 cites W1978809605 @default.
- W1990481462 cites W1981614824 @default.
- W1990481462 cites W1983719153 @default.
- W1990481462 cites W1988965417 @default.
- W1990481462 cites W1989064841 @default.
- W1990481462 cites W1993907684 @default.
- W1990481462 cites W1996257454 @default.
- W1990481462 cites W1997639671 @default.
- W1990481462 cites W2002600262 @default.
- W1990481462 cites W2002750172 @default.
- W1990481462 cites W2009690718 @default.
- W1990481462 cites W2012505575 @default.
- W1990481462 cites W2022021438 @default.
- W1990481462 cites W2023006321 @default.
- W1990481462 cites W2030626058 @default.
- W1990481462 cites W2034974493 @default.
- W1990481462 cites W2035701685 @default.
- W1990481462 cites W2036488051 @default.
- W1990481462 cites W2041473430 @default.
- W1990481462 cites W2043530846 @default.
- W1990481462 cites W2043912757 @default.
- W1990481462 cites W2045430851 @default.
- W1990481462 cites W2049357144 @default.
- W1990481462 cites W2050534547 @default.
- W1990481462 cites W2052171221 @default.
- W1990481462 cites W2055050490 @default.
- W1990481462 cites W2059864364 @default.
- W1990481462 cites W2061389944 @default.
- W1990481462 cites W2064957819 @default.
- W1990481462 cites W2067818707 @default.
- W1990481462 cites W2070963058 @default.
- W1990481462 cites W2074137193 @default.
- W1990481462 cites W2075410840 @default.
- W1990481462 cites W2078480460 @default.
- W1990481462 cites W2080226321 @default.
- W1990481462 cites W2081488647 @default.
- W1990481462 cites W2085554310 @default.
- W1990481462 cites W2090614325 @default.
- W1990481462 cites W2142524213 @default.
- W1990481462 cites W2244865111 @default.
- W1990481462 doi "https://doi.org/10.1103/physrevb.51.7521" @default.
- W1990481462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9977334" @default.
- W1990481462 hasPublicationYear "1995" @default.
- W1990481462 type Work @default.
- W1990481462 sameAs 1990481462 @default.
- W1990481462 citedByCount "41" @default.
- W1990481462 countsByYear W19904814622012 @default.
- W1990481462 countsByYear W19904814622013 @default.
- W1990481462 countsByYear W19904814622014 @default.
- W1990481462 countsByYear W19904814622017 @default.
- W1990481462 countsByYear W19904814622019 @default.
- W1990481462 crossrefType "journal-article" @default.
- W1990481462 hasAuthorship W1990481462A5028029947 @default.
- W1990481462 hasAuthorship W1990481462A5063447508 @default.
- W1990481462 hasConcept C120665830 @default.
- W1990481462 hasConcept C121332964 @default.
- W1990481462 hasConcept C125485243 @default.
- W1990481462 hasConcept C1276947 @default.
- W1990481462 hasConcept C134306372 @default.
- W1990481462 hasConcept C147120987 @default.
- W1990481462 hasConcept C148869448 @default.
- W1990481462 hasConcept C15359245 @default.
- W1990481462 hasConcept C17729963 @default.
- W1990481462 hasConcept C184779094 @default.
- W1990481462 hasConcept C192562407 @default.
- W1990481462 hasConcept C196298200 @default.
- W1990481462 hasConcept C26873012 @default.
- W1990481462 hasConcept C33923547 @default.
- W1990481462 hasConcept C41999313 @default.
- W1990481462 hasConcept C4839761 @default.
- W1990481462 hasConcept C62520636 @default.
- W1990481462 hasConcept C82706917 @default.
- W1990481462 hasConcept C85080765 @default.
- W1990481462 hasConcept C85867844 @default.
- W1990481462 hasConceptScore W1990481462C120665830 @default.
- W1990481462 hasConceptScore W1990481462C121332964 @default.
- W1990481462 hasConceptScore W1990481462C125485243 @default.
- W1990481462 hasConceptScore W1990481462C1276947 @default.
- W1990481462 hasConceptScore W1990481462C134306372 @default.
- W1990481462 hasConceptScore W1990481462C147120987 @default.
- W1990481462 hasConceptScore W1990481462C148869448 @default.
- W1990481462 hasConceptScore W1990481462C15359245 @default.
- W1990481462 hasConceptScore W1990481462C17729963 @default.
- W1990481462 hasConceptScore W1990481462C184779094 @default.
- W1990481462 hasConceptScore W1990481462C192562407 @default.
- W1990481462 hasConceptScore W1990481462C196298200 @default.