Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990502611> ?p ?o ?g. }
- W1990502611 abstract "The buildup of noncalcified plaques (NCPs) that are vulnerable to rupture in coronary arteries is a risk for myocardial infarction. Interpretation of coronary CT angiography (cCTA) to search for NCP is a challenging task for radiologists due to the low CT number of NCP, the large number of coronary arteries, and multiple phase CT acquisition. The authors conducted a preliminary study to develop machine learning method for automated detection of NCPs in cCTA.With IRB approval, a data set of 83 ECG-gated contrast enhanced cCTA scans with 120 NCPs was collected retrospectively from patient files. A multiscale coronary artery response and rolling balloon region growing (MSCAR-RBG) method was applied to each cCTA volume to extract the coronary arterial trees. Each extracted vessel was reformatted to a straightened volume composed of cCTA slices perpendicular to the vessel centerline. A topological soft-gradient (TSG) detection method was developed to prescreen for NCP candidates by analyzing the 2D topological features of the radial gradient field surface along the vessel wall. The NCP candidates were then characterized by a luminal analysis that used 3D geometric features to quantify the shape information and gray-level features to evaluate the density of the NCP candidates. With machine learning techniques, useful features were identified and combined into an NCP score to differentiate true NCPs from false positives (FPs). To evaluate the effectiveness of the image analysis methods, the authors performed tenfold cross-validation with the available data set. Receiver operating characteristic (ROC) analysis was used to assess the classification performance of individual features and the NCP score. The overall detection performance was estimated by free response ROC (FROC) analysis.With our TSG prescreening method, a prescreening sensitivity of 92.5% (111/120) was achieved with a total of 1181 FPs (14.2 FPs/scan). On average, six features were selected during the tenfold cross-validation training. The average area under the ROC curve (AUC) value for training was 0.87 ± 0.01 and the AUC value for validation was 0.85 ± 0.01. Using the NCP score, FROC analysis of the validation set showed that the FP rates were reduced to 3.16, 1.90, and 1.39 FPs/scan at sensitivities of 90%, 80%, and 70%, respectively.The topological soft-gradient prescreening method in combination with the luminal analysis for FP reduction was effective for detection of NCPs in cCTA, including NCPs causing positive or negative vessel remodeling. The accuracy of vessel segmentation, tracking, and centerline identification has a strong impact on NCP detection. Studies are underway to further improve these techniques and reduce the FPs of the CADe system." @default.
- W1990502611 created "2016-06-24" @default.
- W1990502611 creator A5027247097 @default.
- W1990502611 creator A5027407531 @default.
- W1990502611 creator A5030331648 @default.
- W1990502611 creator A5033986825 @default.
- W1990502611 creator A5045975101 @default.
- W1990502611 creator A5048694381 @default.
- W1990502611 creator A5087281080 @default.
- W1990502611 creator A5089217781 @default.
- W1990502611 creator A5089985924 @default.
- W1990502611 date "2014-07-07" @default.
- W1990502611 modified "2023-10-05" @default.
- W1990502611 title "Computerized detection of noncalcified plaques in coronary CT angiography: Evaluation of topological soft gradient prescreening method and luminal analysis" @default.
- W1990502611 cites W1260204519 @default.
- W1990502611 cites W1987318818 @default.
- W1990502611 cites W1997108165 @default.
- W1990502611 cites W2045856574 @default.
- W1990502611 cites W2049268713 @default.
- W1990502611 cites W2056924358 @default.
- W1990502611 cites W2057891547 @default.
- W1990502611 cites W2059192589 @default.
- W1990502611 cites W2070773268 @default.
- W1990502611 cites W2100234963 @default.
- W1990502611 cites W2105010133 @default.
- W1990502611 cites W2113528563 @default.
- W1990502611 cites W2124295282 @default.
- W1990502611 cites W2134343469 @default.
- W1990502611 cites W2148516878 @default.
- W1990502611 cites W2150134853 @default.
- W1990502611 cites W2162411291 @default.
- W1990502611 cites W2168365765 @default.
- W1990502611 cites W2169528473 @default.
- W1990502611 cites W2477943143 @default.
- W1990502611 cites W2616018170 @default.
- W1990502611 cites W2768019923 @default.
- W1990502611 doi "https://doi.org/10.1118/1.4885958" @default.
- W1990502611 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4105962" @default.
- W1990502611 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25086532" @default.
- W1990502611 hasPublicationYear "2014" @default.
- W1990502611 type Work @default.
- W1990502611 sameAs 1990502611 @default.
- W1990502611 citedByCount "23" @default.
- W1990502611 countsByYear W19905026112015 @default.
- W1990502611 countsByYear W19905026112016 @default.
- W1990502611 countsByYear W19905026112017 @default.
- W1990502611 countsByYear W19905026112018 @default.
- W1990502611 countsByYear W19905026112019 @default.
- W1990502611 countsByYear W19905026112020 @default.
- W1990502611 countsByYear W19905026112021 @default.
- W1990502611 countsByYear W19905026112022 @default.
- W1990502611 countsByYear W19905026112023 @default.
- W1990502611 crossrefType "journal-article" @default.
- W1990502611 hasAuthorship W1990502611A5027247097 @default.
- W1990502611 hasAuthorship W1990502611A5027407531 @default.
- W1990502611 hasAuthorship W1990502611A5030331648 @default.
- W1990502611 hasAuthorship W1990502611A5033986825 @default.
- W1990502611 hasAuthorship W1990502611A5045975101 @default.
- W1990502611 hasAuthorship W1990502611A5048694381 @default.
- W1990502611 hasAuthorship W1990502611A5087281080 @default.
- W1990502611 hasAuthorship W1990502611A5089217781 @default.
- W1990502611 hasAuthorship W1990502611A5089985924 @default.
- W1990502611 hasBestOaLocation W19905026112 @default.
- W1990502611 hasConcept C126322002 @default.
- W1990502611 hasConcept C126838900 @default.
- W1990502611 hasConcept C136229726 @default.
- W1990502611 hasConcept C154945302 @default.
- W1990502611 hasConcept C164705383 @default.
- W1990502611 hasConcept C2776820930 @default.
- W1990502611 hasConcept C2778742706 @default.
- W1990502611 hasConcept C41008148 @default.
- W1990502611 hasConcept C58471807 @default.
- W1990502611 hasConcept C58489278 @default.
- W1990502611 hasConcept C64869954 @default.
- W1990502611 hasConcept C71924100 @default.
- W1990502611 hasConceptScore W1990502611C126322002 @default.
- W1990502611 hasConceptScore W1990502611C126838900 @default.
- W1990502611 hasConceptScore W1990502611C136229726 @default.
- W1990502611 hasConceptScore W1990502611C154945302 @default.
- W1990502611 hasConceptScore W1990502611C164705383 @default.
- W1990502611 hasConceptScore W1990502611C2776820930 @default.
- W1990502611 hasConceptScore W1990502611C2778742706 @default.
- W1990502611 hasConceptScore W1990502611C41008148 @default.
- W1990502611 hasConceptScore W1990502611C58471807 @default.
- W1990502611 hasConceptScore W1990502611C58489278 @default.
- W1990502611 hasConceptScore W1990502611C64869954 @default.
- W1990502611 hasConceptScore W1990502611C71924100 @default.
- W1990502611 hasFunder F4320332505 @default.
- W1990502611 hasIssue "8Part1" @default.
- W1990502611 hasLocation W19905026111 @default.
- W1990502611 hasLocation W19905026112 @default.
- W1990502611 hasLocation W19905026113 @default.
- W1990502611 hasLocation W19905026114 @default.
- W1990502611 hasLocation W19905026115 @default.
- W1990502611 hasOpenAccess W1990502611 @default.
- W1990502611 hasPrimaryLocation W19905026111 @default.
- W1990502611 hasRelatedWork W1518873647 @default.
- W1990502611 hasRelatedWork W1998581748 @default.
- W1990502611 hasRelatedWork W2021562513 @default.
- W1990502611 hasRelatedWork W2049214470 @default.