Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990509145> ?p ?o ?g. }
- W1990509145 endingPage "2896" @default.
- W1990509145 startingPage "2885" @default.
- W1990509145 abstract "There is a need for efficient methods for estimating trends in spatio-temporal Earth Observation data. A suitable model for such data is a space-varying regression model, where the regression coefficients for the spatial locations are dependent. A second order intrinsic Gaussian Markov Random Field prior is used to specify the spatial covariance structure. Model parameters are estimated using the Expectation Maximisation (EM) algorithm, which allows for feasible computation times for relatively large data sets. Results are illustrated with simulated data sets and real vegetation data from the Sahel area in northern Africa. The results indicate a substantial gain in accuracy compared with methods based on independent ordinary least squares regressions for the individual pixels in the data set. Use of the EM algorithm also gives a substantial performance gain over Markov Chain Monte Carlo-based estimation approaches." @default.
- W1990509145 created "2016-06-24" @default.
- W1990509145 creator A5001017767 @default.
- W1990509145 creator A5032156805 @default.
- W1990509145 creator A5041935765 @default.
- W1990509145 creator A5057201507 @default.
- W1990509145 date "2009-06-01" @default.
- W1990509145 modified "2023-10-03" @default.
- W1990509145 title "Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields" @default.
- W1990509145 cites W1573124210 @default.
- W1990509145 cites W1963958340 @default.
- W1990509145 cites W1974047452 @default.
- W1990509145 cites W1979971663 @default.
- W1990509145 cites W1981978730 @default.
- W1990509145 cites W1982480630 @default.
- W1990509145 cites W1989074151 @default.
- W1990509145 cites W1990923471 @default.
- W1990509145 cites W2004014822 @default.
- W1990509145 cites W2007468519 @default.
- W1990509145 cites W2012237032 @default.
- W1990509145 cites W2016521059 @default.
- W1990509145 cites W2017012156 @default.
- W1990509145 cites W2018300239 @default.
- W1990509145 cites W2020983251 @default.
- W1990509145 cites W2024991751 @default.
- W1990509145 cites W2028884629 @default.
- W1990509145 cites W2037343387 @default.
- W1990509145 cites W2049633694 @default.
- W1990509145 cites W2090600964 @default.
- W1990509145 cites W2104780056 @default.
- W1990509145 cites W2109606373 @default.
- W1990509145 cites W2113503197 @default.
- W1990509145 cites W2123610463 @default.
- W1990509145 cites W2138751033 @default.
- W1990509145 cites W2149174640 @default.
- W1990509145 cites W2155962616 @default.
- W1990509145 cites W2157144502 @default.
- W1990509145 cites W4232352629 @default.
- W1990509145 cites W4243996262 @default.
- W1990509145 doi "https://doi.org/10.1016/j.csda.2008.09.017" @default.
- W1990509145 hasPublicationYear "2009" @default.
- W1990509145 type Work @default.
- W1990509145 sameAs 1990509145 @default.
- W1990509145 citedByCount "25" @default.
- W1990509145 countsByYear W19905091452012 @default.
- W1990509145 countsByYear W19905091452013 @default.
- W1990509145 countsByYear W19905091452014 @default.
- W1990509145 countsByYear W19905091452015 @default.
- W1990509145 countsByYear W19905091452016 @default.
- W1990509145 countsByYear W19905091452017 @default.
- W1990509145 countsByYear W19905091452018 @default.
- W1990509145 countsByYear W19905091452019 @default.
- W1990509145 countsByYear W19905091452021 @default.
- W1990509145 countsByYear W19905091452022 @default.
- W1990509145 crossrefType "journal-article" @default.
- W1990509145 hasAuthorship W1990509145A5001017767 @default.
- W1990509145 hasAuthorship W1990509145A5032156805 @default.
- W1990509145 hasAuthorship W1990509145A5041935765 @default.
- W1990509145 hasAuthorship W1990509145A5057201507 @default.
- W1990509145 hasBestOaLocation W19905091452 @default.
- W1990509145 hasConcept C105795698 @default.
- W1990509145 hasConcept C121332964 @default.
- W1990509145 hasConcept C121864883 @default.
- W1990509145 hasConcept C124504099 @default.
- W1990509145 hasConcept C126322002 @default.
- W1990509145 hasConcept C127413603 @default.
- W1990509145 hasConcept C130402806 @default.
- W1990509145 hasConcept C142724271 @default.
- W1990509145 hasConcept C149782125 @default.
- W1990509145 hasConcept C154945302 @default.
- W1990509145 hasConcept C163716315 @default.
- W1990509145 hasConcept C168743327 @default.
- W1990509145 hasConcept C169258074 @default.
- W1990509145 hasConcept C201995342 @default.
- W1990509145 hasConcept C2776133958 @default.
- W1990509145 hasConcept C2778045648 @default.
- W1990509145 hasConcept C33923547 @default.
- W1990509145 hasConcept C41008148 @default.
- W1990509145 hasConcept C51267290 @default.
- W1990509145 hasConcept C61326573 @default.
- W1990509145 hasConcept C62520636 @default.
- W1990509145 hasConcept C71924100 @default.
- W1990509145 hasConcept C89600930 @default.
- W1990509145 hasConcept C95190672 @default.
- W1990509145 hasConcept C96250715 @default.
- W1990509145 hasConcept C98763669 @default.
- W1990509145 hasConceptScore W1990509145C105795698 @default.
- W1990509145 hasConceptScore W1990509145C121332964 @default.
- W1990509145 hasConceptScore W1990509145C121864883 @default.
- W1990509145 hasConceptScore W1990509145C124504099 @default.
- W1990509145 hasConceptScore W1990509145C126322002 @default.
- W1990509145 hasConceptScore W1990509145C127413603 @default.
- W1990509145 hasConceptScore W1990509145C130402806 @default.
- W1990509145 hasConceptScore W1990509145C142724271 @default.
- W1990509145 hasConceptScore W1990509145C149782125 @default.
- W1990509145 hasConceptScore W1990509145C154945302 @default.
- W1990509145 hasConceptScore W1990509145C163716315 @default.
- W1990509145 hasConceptScore W1990509145C168743327 @default.