Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990568312> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W1990568312 abstract "Vol. 115, No. 6 PerspectivesOpen AccessInflammatory Response to TiO2 and Carbonaceous Particles Scales Best with BET Surface Area Tobias Stoeger, Otmar Schmid, Shinji Takenaka, and Holger Schulz Tobias Stoeger Search for more papers by this author , Otmar Schmid Search for more papers by this author , Shinji Takenaka Search for more papers by this author , and Holger Schulz Search for more papers by this author Published:1 June 2007https://doi.org/10.1289/ehp.115-a290bCited by:31AboutSectionsPDF ToolsDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InReddit In an attempt to identify the proper dose metric for particle toxicity, Wittmaack (2007) reanalyzed our dose–response data (Stoeger et al. 2006) and that of Oberdörster et al. (2005) on acute lung inflammation in rodents after instillation of various particle types. Out of particle BET surface area (SBET), particle number, joint length, and “geometric” surface area, Wittmaack concluded that particle number tends “to work best” as dose metric. We disagree with his conclusion.First, we wonder why Wittmaack (2007) used our data but ignored the data of Oberdörster et al. (2005) for the identification of the best dose metric. Figure 1 shows our dose–response data (in mice) for six different types of ultrafine carbonaceous particles (10–50 nm) and the data of Oberdörster et al. (2005) for fine (~ 250 nm) and ultrafine (~ 20 nm) TiO2 particles; we present the data for rats, which was reanalyzed by Wittmaack, and also the mouse data from Oberdörster et al. (2005). In Figure 1 the inflammatory response after 24 hr is expressed as the ratio of the polymorphonuclear leukocytes (PMNs) to lavaged cells, and the instilled dose is normalized to lung weight, because this facilitates interspecies comparison (Oberdörster et al. 2005). As suggested by Wittmaack (2007), we limit our discussion to the linear response regime [analogous to his Figure 3 (Wittmaack 2007)]. For this data set, the linear correlation coefficient R2 is 0.46, 0.51, 0.67, and 0.72 for particle number, joint length, “geometric” surface area, and SBET, respectively. Particularly, the response to the fine particles, as represented by the red fit line (almost identical to the y-axis in Figure 1A), is not adequately described by particle number (Figure 1A), whereas SBET works well for all particle sizes (Figure 1B). Although we do not suggest SBET as a “universal” dose metric (chemistry, charge, etc., are also relevant), we conclude that for the dose metric examined here, SBET is the most relevant dose parameter. Wittmaack’s preference for particle number appears to be the result of an unsubstantiated restriction of his analysis to our data, which is dominated by particles in a relatively narrow size regime between about 10 and 25 nm.Figure 1 Acute pulmonary inflammatory response (PMNs) to TiO2 [Oberdörster et al. 2005; Figure 4 and Figure S-2 (Supplemental Material available online at http://ehp.niehs.nih.gov/members/2005/7339/supplemental.pdf)] and carbonaceous particles (Stoeger et al. 2006; Figure 1) in rats and mice, with particle number (A) and SBET (B) as the dose metric.Second, all investigated dose parameters (except SBET) depend on accurate determination of the mean particle diameter, <d>, requiring tedious and potentially uncertain single particle analysis. Wittmaack (2007) acknowledged potentially large errors in <d> for particles below about 20 nm [i.e., for four out of our six (carbonaceous) particle types]. Being aware of these limitations, we intentionally reported only a range of observed particle diameters (not <d>) in our article (Stoeger et al. 2006). Unfortunately, Wittmaack did not discuss his conclusions in light of these methodologic limitations. Especially for the smallest particle type (here spark-generated carbon particles with <d> = 9.8 nm), preferential particle selection is likely to result in an overestimation of <d>. Assuming a 25% sizing error, this yields a systematic error of + 100% in particle number (~ <d>−3), which shifts these data points far away from the linear fit line (see error bars in Figure 1A). In contrast, SBET requires only a single measurement on an aliquot of the administered particles; that is, it is not adversely affected by problems associated with single particle analysis, and it adequately accounts for potentially important particle characteristics such as particle morphology and surface porosity.In summary, we do not agree with the dose–response interpretation of our data by Wittmaack (2007). We conclude that SBET (and not particle number) is the best dose parameter, accounting for 72% (R2 = 0.72) of the observed inflammatory response for both data sets spanning a size range of 10–250 nm.ReferencesOberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823-83916002369. Link, Google ScholarStoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter Bet al.. 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114:328-33316507453. Link, Google ScholarWittmaack K. 2007. In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what?Environ Health Perspect 115:187-194doi:10.1289/ehp.9254 [Online 3 October 2006].17384763. Link, Google ScholarFiguresReferencesRelatedDetailsCited by Loret T, Rogerieux F, Trouiller B, Braun A, Egles C and Lacroix G (2018) Predicting the in vivo pulmonary toxicity induced by acute exposure to poorly soluble nanomaterials by using advanced in vitro methods, Particle and Fibre Toxicology, 10.1186/s12989-018-0260-6, 15:1, Online publication date: 1-Dec-2018. Ganguly K, Ettehadieh D, Upadhyay S, Takenaka S, Adler T, Karg E, Krombach F, Kreyling W, Schulz H, Schmid O and Stoeger T (2017) Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: comparison of inhalation versus intra-arterial infusion exposures in mice, Particle and Fibre Toxicology, 10.1186/s12989-017-0200-x, 14:1, Online publication date: 1-Dec-2017. Lindner K, Ströbele M, Schlick S, Webering S, Jenckel A, Kopf J, Danov O, Sewald K, Buj C, Creutzenberg O, Tillmann T, Pohlmann G, Ernst H, Ziemann C, Hüttmann G, Heine H, Bockhorn H, Hansen T, König P and Fehrenbach H (2017) Biological effects of carbon black nanoparticles are changed by surface coating with polycyclic aromatic hydrocarbons, Particle and Fibre Toxicology, 10.1186/s12989-017-0189-1, 14:1, Online publication date: 1-Dec-2017. Hadrup N, Bengtson S, Jacobsen N, Jackson P, Nocun M, Saber A, Jensen K, Wallin H and Vogel U (2017) Influence of dispersion medium on nanomaterial-induced pulmonary inflammation and DNA strand breaks: investigation of carbon black, carbon nanotubes and three titanium dioxide nanoparticles, Mutagenesis, 10.1093/mutage/gex042, 32:6, (581-597), Online publication date: 31-Dec-2018. Koivisto A, Kling K, Levin M, Fransman W, Gosens I, Cassee F and Jensen K (2017) First order risk assessment for nanoparticle inhalation exposure during injection molding of polypropylene composites and production of tungsten-carbide-cobalt fine powder based upon pulmonary inflammation and surface area dose, NanoImpact, 10.1016/j.impact.2016.11.002, 6, (30-38), Online publication date: 1-Apr-2017. Schmid O and Stoeger T (2016) Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung, Journal of Aerosol Science, 10.1016/j.jaerosci.2015.12.006, 99, (133-143), Online publication date: 1-Sep-2016. Pease C, Rücker T and Birk T (2016) Review of the Evidence from Epidemiology, Toxicology, and Lung Bioavailability on the Carcinogenicity of Inhaled Iron Oxide Particulates, Chemical Research in Toxicology, 10.1021/acs.chemrestox.5b00448, 29:3, (237-254), Online publication date: 21-Mar-2016. Chen S, Yin R, Mutze K, Yu Y, Takenaka S, Königshoff M and Stoeger T (2016) No involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice, Particle and Fibre Toxicology, 10.1186/s12989-016-0144-6, 13:1, Online publication date: 1-Dec-2015. Hegde K, Goswami R, Sarma S, Veeranki V, Brar S and Surampalli R (2015) Environmental Hazards and Risks of Nanomaterials Nanomaterials in the Environment, 10.1061/9780784414088.ch14, (357-382), Online publication date: 12-Oct-2015. Hondow N, Brown A and Brydson R (2015) Nanomaterials Characterization of Nanomaterials in Complex Environmental and Biological Media, 10.1016/B978-0-08-099948-7.00006-3, (183-216), . Rach J, Budde J, Möhle N and Aufderheide M (2013) Direct exposure at the air-liquid interface: evaluation of an in vitro approach for simulating inhalation of airborne substances , Journal of Applied Toxicology, 10.1002/jat.2899, 34:5, (506-515), Online publication date: 1-May-2014. Gavrilescu M (2014) Colloid-Mediated Transport and the Fate of Contaminants in Soils The Role of Colloidal Systems in Environmental Protection, 10.1016/B978-0-444-63283-8.00017-X, (397-451), . Upadhyay S, Stoeger T, George L, Schladweiler M, Kodavanti U, Ganguly K and Schulz H (2014) Ultrafine carbon particle mediated cardiovascular impairment of aged spontaneously hypertensive rats, Particle and Fibre Toxicology, 10.1186/s12989-014-0036-6, 11:1, Online publication date: 1-Dec-2014. Fißan H and Horn H (2013) Engineered Nanoparticle Release, Exposure Pathway and Dose, Measures and Measuring Techniques for Nanoparticle Exposure in Air Safety Aspects of Engineered Nanomaterials, 10.1201/b15261-5, (99-134), Online publication date: 1-Jul-2013. Yang X, Gondikas A, Marinakos S, Auffan M, Liu J, Hsu-Kim H and Meyer J (2011) Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in Caenorhabditis elegans , Environmental Science & Technology, 10.1021/es202417t, 46:2, (1119-1127), Online publication date: 17-Jan-2012. Han X, Corson N, Wade-Mercer P, Gelein R, Jiang J, Sahu M, Biswas P, Finkelstein J, Elder A and Oberdörster G (2012) Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data, Toxicology, 10.1016/j.tox.2012.03.006, 297:1-3, (1-9), Online publication date: 1-Jul-2012. Hansen S and Baun A (2011) European Regulation Affecting Nanomaterials - Review of Limitations and Future Recommendations, Dose-Response, 10.2203/dose-response.10-029.Hansen, 10:3, (dose-response.1), Online publication date: 1-Jul-2012. Gwinn M (2011) Nanomaterials: Potential Ecological Uses and Effects⋆⋆The views expressed in this article are that of the author and do not represent the views and policies of the US Environmental Protection Agency. Encyclopedia of Environmental Health, 10.1016/B978-0-444-52272-6.00556-0, (1-11), . Paur H, Cassee F, Teeguarden J, Fissan H, Diabate S, Aufderheide M, Kreyling W, Hänninen O, Kasper G, Riediker M, Rothen-Rutishauser B and Schmid O (2011) In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology, Journal of Aerosol Science, 10.1016/j.jaerosci.2011.06.005, 42:10, (668-692), Online publication date: 1-Oct-2011. Boverhof D and David R (2009) Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation, Analytical and Bioanalytical Chemistry, 10.1007/s00216-009-3103-3, 396:3, (953-961), Online publication date: 1-Feb-2010. Nassimi M, Schleh C, Lauenstein H, Hussein R, Hoymann H, Koch W, Pohlmann G, Krug N, Sewald K, Rittinghausen S, Braun A and Müller-Goymann C (2010) A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung, European Journal of Pharmaceutics and Biopharmaceutics, 10.1016/j.ejpb.2010.02.014, 75:2, (107-116), Online publication date: 1-Jun-2010. Gonzalez L, Thomassen L, Plas G, Rabolli V, Napierska D, Decordier I, Roelants M, Hoet P, Kirschhock C, Martens J, Lison D and Kirsch-Volders M (2010) Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models, Nanotoxicology, 10.3109/17435390.2010.501913, 4:4, (382-395), Online publication date: 1-Dec-2010. Tinkle S (2009) Maximizing safe design of engineered nanomaterials: the NIH and NIEHS research perspective, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 10.1002/wnan.63, 2:1, (88-98), Online publication date: 1-Jan-2010. Dhawan A, Sharma V and Parmar D (2009) Nanomaterials: A challenge for toxicologists, Nanotoxicology, 10.1080/17435390802578595, 3:1, (1-9), Online publication date: 1-Jan-2009. Waters K, Masiello L, Zangar R, Tarasevich B, Karin N, Quesenberry R, Bandyopadhyay S, Teeguarden J, Pounds J and Thrall B (2008) Macrophage Responses to Silica Nanoparticles are Highly Conserved Across Particle Sizes, Toxicological Sciences, 10.1093/toxsci/kfn250, 107:2, (553-569), Online publication date: 1-Feb-2009., Online publication date: 1-Feb-2009. Schmid O, Möller W, Semmler-Behnke M, A. Ferron G, Karg E, Lipka J, Schulz H, Kreyling W and Stoeger T (2009) Dosimetry and toxicology of inhaled ultrafine particles, Biomarkers, 10.1080/13547500902965617, 14:sup1, (67-73), Online publication date: 1-Jul-2009. Pauluhn J (2009) Pulmonary Toxicity and Fate of Agglomerated 10 and 40 nm Aluminum Oxyhydroxides following 4-Week Inhalation Exposure of Rats: Toxic Effects are Determined by Agglomerated, not Primary Particle Size, Toxicological Sciences, 10.1093/toxsci/kfp046, 109:1, (152-167), Online publication date: 1-May-2009., Online publication date: 1-May-2009. Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen L, Martens J, Billon-Galland M, Fleury-Feith J, Moisan F, Pairon J and Marano F (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount, Toxicology, 10.1016/j.tox.2009.04.001, 260:1-3, (142-149), Online publication date: 1-Jun-2009. Brandenberger C, Rothen-Rutishauser B, Blank F, Gehr P and Mühlfeld C (2009) Particles induce apical plasma membrane enlargement in epithelial lung cell line depending on particle surface area dose, Respiratory Research, 10.1186/1465-9921-10-22, 10:1, Online publication date: 1-Dec-2009. Yang J, Hu C, Jin Y, Chen H, Zhu W and Zhou X (2018) Fabrication of TiO2 mesoporous microspheres sensitized with CdS nanoparticles and application in photodegradation of organic dye, Research on Chemical Intermediates, 10.1007/s11164-018-3449-2 Hristozov D and Malsch I (2009) Hazards and Risks of Engineered Nanoparticles for the Environment and Human Health, Sustainability, 10.3390/su1041161, 1:4, (1161-1194) Vol. 115, No. 6 June 2007Metrics About Article Metrics Publication History Originally published1 June 2007Published in print1 June 2007 Financial disclosuresPDF download License information EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted. Note to readers with disabilities EHP strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in EHP articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact [email protected]. Our staff will work with you to assess and meet your accessibility needs within 3 working days." @default.
- W1990568312 created "2016-06-24" @default.
- W1990568312 creator A5000222507 @default.
- W1990568312 creator A5000694967 @default.
- W1990568312 creator A5066741040 @default.
- W1990568312 creator A5090579172 @default.
- W1990568312 date "2007-06-01" @default.
- W1990568312 modified "2023-09-24" @default.
- W1990568312 title "Inflammatory Response to TiO <sub>2</sub> and Carbonaceous Particles Scales Best with BET Surface Area" @default.
- W1990568312 cites W2024481637 @default.
- W1990568312 cites W2028440527 @default.
- W1990568312 cites W2155118487 @default.
- W1990568312 doi "https://doi.org/10.1289/ehp.115-a290b" @default.
- W1990568312 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1892122" @default.
- W1990568312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17589572" @default.
- W1990568312 hasPublicationYear "2007" @default.
- W1990568312 type Work @default.
- W1990568312 sameAs 1990568312 @default.
- W1990568312 citedByCount "44" @default.
- W1990568312 countsByYear W19905683122012 @default.
- W1990568312 countsByYear W19905683122013 @default.
- W1990568312 countsByYear W19905683122014 @default.
- W1990568312 countsByYear W19905683122015 @default.
- W1990568312 countsByYear W19905683122016 @default.
- W1990568312 countsByYear W19905683122017 @default.
- W1990568312 countsByYear W19905683122018 @default.
- W1990568312 countsByYear W19905683122019 @default.
- W1990568312 countsByYear W19905683122020 @default.
- W1990568312 countsByYear W19905683122021 @default.
- W1990568312 countsByYear W19905683122022 @default.
- W1990568312 countsByYear W19905683122023 @default.
- W1990568312 crossrefType "journal-article" @default.
- W1990568312 hasAuthorship W1990568312A5000222507 @default.
- W1990568312 hasAuthorship W1990568312A5000694967 @default.
- W1990568312 hasAuthorship W1990568312A5066741040 @default.
- W1990568312 hasAuthorship W1990568312A5090579172 @default.
- W1990568312 hasBestOaLocation W19905683121 @default.
- W1990568312 hasConcept C107872376 @default.
- W1990568312 hasConcept C127413603 @default.
- W1990568312 hasConcept C150394285 @default.
- W1990568312 hasConcept C178790620 @default.
- W1990568312 hasConcept C185592680 @default.
- W1990568312 hasConcept C27923307 @default.
- W1990568312 hasConcept C39432304 @default.
- W1990568312 hasConcept C42360764 @default.
- W1990568312 hasConceptScore W1990568312C107872376 @default.
- W1990568312 hasConceptScore W1990568312C127413603 @default.
- W1990568312 hasConceptScore W1990568312C150394285 @default.
- W1990568312 hasConceptScore W1990568312C178790620 @default.
- W1990568312 hasConceptScore W1990568312C185592680 @default.
- W1990568312 hasConceptScore W1990568312C27923307 @default.
- W1990568312 hasConceptScore W1990568312C39432304 @default.
- W1990568312 hasConceptScore W1990568312C42360764 @default.
- W1990568312 hasIssue "6" @default.
- W1990568312 hasLocation W19905683121 @default.
- W1990568312 hasLocation W19905683122 @default.
- W1990568312 hasLocation W19905683123 @default.
- W1990568312 hasLocation W19905683124 @default.
- W1990568312 hasOpenAccess W1990568312 @default.
- W1990568312 hasPrimaryLocation W19905683121 @default.
- W1990568312 hasRelatedWork W1982483896 @default.
- W1990568312 hasRelatedWork W1991747016 @default.
- W1990568312 hasRelatedWork W2029454930 @default.
- W1990568312 hasRelatedWork W2063770181 @default.
- W1990568312 hasRelatedWork W2156016266 @default.
- W1990568312 hasRelatedWork W2362396378 @default.
- W1990568312 hasRelatedWork W2367688986 @default.
- W1990568312 hasRelatedWork W2748952813 @default.
- W1990568312 hasRelatedWork W2899084033 @default.
- W1990568312 hasRelatedWork W2914785704 @default.
- W1990568312 hasVolume "115" @default.
- W1990568312 isParatext "false" @default.
- W1990568312 isRetracted "false" @default.
- W1990568312 magId "1990568312" @default.
- W1990568312 workType "article" @default.