Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990634016> ?p ?o ?g. }
- W1990634016 endingPage "79" @default.
- W1990634016 startingPage "76" @default.
- W1990634016 abstract "Bound states of elementary spin waves (magnons) have been predicted to occur in one-dimensional quantum magnets; the observation of two-magnon bound states in a system of ultracold bosonic atoms in an optical lattice is now reported. Two papers published in this issue of Nature show that the propagation of energy quanta in very different physical systems can exhibit the same, unusual dynamics, where bound pairs of quanta become dominant. Ofer Firstenberg et al. realize coherent interactions between individual photons — quanta of light — which are massless and do not usually interact. They achieve this using a quantum nonlinear medium inside which individual photons pair up and travel as massive particles with strong mutual attraction. Potential applications of this technique include all-optical switching, deterministic photonic quantum logic and the generation of strongly correlated states of light. The second paper deals with magnons, the quanta that carry energy in magnets. More than eighty years ago, Hans Bethe predicted the existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets. Experimental observation of the phenomenon remained elusive, but now Takeshi Fukuhara et al. have observed two-magnon bound states in a system of ultracold bosonic atoms in an optical lattice. The results provide a new way of studying fundamental properties of quantum magnets. In an accompanying News and Views, Sougato Bose puts these two independent findings into a general context of quantum many-body dynamics. The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago1. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research2,3,4,5, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution6,7 following a local excitation8. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems." @default.
- W1990634016 created "2016-06-24" @default.
- W1990634016 creator A5018969123 @default.
- W1990634016 creator A5032954061 @default.
- W1990634016 creator A5044554393 @default.
- W1990634016 creator A5048087606 @default.
- W1990634016 creator A5059213545 @default.
- W1990634016 creator A5083319852 @default.
- W1990634016 creator A5090632882 @default.
- W1990634016 date "2013-09-25" @default.
- W1990634016 modified "2023-10-18" @default.
- W1990634016 title "Microscopic observation of magnon bound states and their dynamics" @default.
- W1990634016 cites W1672065850 @default.
- W1990634016 cites W1967205858 @default.
- W1990634016 cites W1974082548 @default.
- W1990634016 cites W1976247668 @default.
- W1990634016 cites W1978157358 @default.
- W1990634016 cites W1978333549 @default.
- W1990634016 cites W1978536338 @default.
- W1990634016 cites W1978666604 @default.
- W1990634016 cites W1996120044 @default.
- W1990634016 cites W1999799374 @default.
- W1990634016 cites W2004955122 @default.
- W1990634016 cites W2027792124 @default.
- W1990634016 cites W2029317558 @default.
- W1990634016 cites W2035198333 @default.
- W1990634016 cites W2036272134 @default.
- W1990634016 cites W2038123439 @default.
- W1990634016 cites W2038256232 @default.
- W1990634016 cites W2038352782 @default.
- W1990634016 cites W2038736411 @default.
- W1990634016 cites W2043302365 @default.
- W1990634016 cites W2049883489 @default.
- W1990634016 cites W2056544253 @default.
- W1990634016 cites W2061175869 @default.
- W1990634016 cites W2084476746 @default.
- W1990634016 cites W2098267872 @default.
- W1990634016 cites W2134786991 @default.
- W1990634016 cites W2136680345 @default.
- W1990634016 cites W2143757924 @default.
- W1990634016 cites W2147602835 @default.
- W1990634016 cites W2151392186 @default.
- W1990634016 cites W2159650664 @default.
- W1990634016 cites W2317586084 @default.
- W1990634016 cites W3098783008 @default.
- W1990634016 cites W3102310528 @default.
- W1990634016 cites W3102327618 @default.
- W1990634016 doi "https://doi.org/10.1038/nature12541" @default.
- W1990634016 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24067608" @default.
- W1990634016 hasPublicationYear "2013" @default.
- W1990634016 type Work @default.
- W1990634016 sameAs 1990634016 @default.
- W1990634016 citedByCount "354" @default.
- W1990634016 countsByYear W19906340162013 @default.
- W1990634016 countsByYear W19906340162014 @default.
- W1990634016 countsByYear W19906340162015 @default.
- W1990634016 countsByYear W19906340162016 @default.
- W1990634016 countsByYear W19906340162017 @default.
- W1990634016 countsByYear W19906340162018 @default.
- W1990634016 countsByYear W19906340162019 @default.
- W1990634016 countsByYear W19906340162020 @default.
- W1990634016 countsByYear W19906340162021 @default.
- W1990634016 countsByYear W19906340162022 @default.
- W1990634016 countsByYear W19906340162023 @default.
- W1990634016 crossrefType "journal-article" @default.
- W1990634016 hasAuthorship W1990634016A5018969123 @default.
- W1990634016 hasAuthorship W1990634016A5032954061 @default.
- W1990634016 hasAuthorship W1990634016A5044554393 @default.
- W1990634016 hasAuthorship W1990634016A5048087606 @default.
- W1990634016 hasAuthorship W1990634016A5059213545 @default.
- W1990634016 hasAuthorship W1990634016A5083319852 @default.
- W1990634016 hasAuthorship W1990634016A5090632882 @default.
- W1990634016 hasBestOaLocation W19906340163 @default.
- W1990634016 hasConcept C121332964 @default.
- W1990634016 hasConcept C159317903 @default.
- W1990634016 hasConcept C174084160 @default.
- W1990634016 hasConcept C204382992 @default.
- W1990634016 hasConcept C26873012 @default.
- W1990634016 hasConcept C62520636 @default.
- W1990634016 hasConcept C68717125 @default.
- W1990634016 hasConcept C82217956 @default.
- W1990634016 hasConcept C84114770 @default.
- W1990634016 hasConceptScore W1990634016C121332964 @default.
- W1990634016 hasConceptScore W1990634016C159317903 @default.
- W1990634016 hasConceptScore W1990634016C174084160 @default.
- W1990634016 hasConceptScore W1990634016C204382992 @default.
- W1990634016 hasConceptScore W1990634016C26873012 @default.
- W1990634016 hasConceptScore W1990634016C62520636 @default.
- W1990634016 hasConceptScore W1990634016C68717125 @default.
- W1990634016 hasConceptScore W1990634016C82217956 @default.
- W1990634016 hasConceptScore W1990634016C84114770 @default.
- W1990634016 hasIssue "7469" @default.
- W1990634016 hasLocation W19906340161 @default.
- W1990634016 hasLocation W19906340162 @default.
- W1990634016 hasLocation W19906340163 @default.
- W1990634016 hasLocation W19906340164 @default.
- W1990634016 hasLocation W19906340165 @default.
- W1990634016 hasLocation W19906340166 @default.