Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990757291> ?p ?o ?g. }
- W1990757291 endingPage "146" @default.
- W1990757291 startingPage "127" @default.
- W1990757291 abstract "Natural and synthetic dolomites have been shortened in triaxial compression experiments at temperatures of 400–850 °C, equilibrium CO2 pore pressures, effective confining pressures of 50–400 MPa, and strain rates of 10− 4 to 10− 7 s− 1. At low temperatures (T < 700 °C) natural and synthetic dolomites exhibit high crystal-plastic strengths (> 600 MPa), both for coarse-grained (240 μm) and fine-grained (2 μm and 12 μm) samples; differential stresses vary little with strain rate or temperature and microstructures of coarse-grained samples are dominated by f-twins and undulatory extinction. An exponential relation (ɛ˙ = ɛ˙o exp[α(σ1 − σ3)] between strain rate ɛ˙ and differential stress (σ1 − σ3) describes the crystal plasticity of dolomite at a fixed Pe and T, with α = 0.079 (± 0.01) MPa− 1 and 0.023 (± 07.03) MPa− 1 for coarse- and fine-grained materials, respectively. However, measured values of (σ1 − σ3) increase with increasing temperature, a trend that has been observed for dolomite single crystals but cannot be described by an Arrhenius relation. At high temperatures (T ≥ 800 °C for coarse, T ≥ 700 °C for fine), dolomite strengths are reduced with increasing temperature and decreasing strain rate, but the mechanisms of deformation differ depending on grain size. High temperature flow strengths of coarse-grained dolomite can be described by a power law ɛ˙ = ɛ˙o[(σ1 − σ3) / μ]nexp(− H⁎ / RT) with a large value of n (> 5) and a ratio of parameters H⁎ / n = 60 (± 6) kJ/mol. Microstructures of coarse-grained samples deformed at T ≥ 800 °C show evidence of dislocation creep with little mechanical twinning. High temperature flow strengths of fine-grained synthetic dolomite fit a thermally activated Newtonian law, where the effective n = 1.28 (± 0.15) and H⁎ = 280 (± 45 kJ/mol), consistent with diffusion creep. The change in mechanical response of coarse-grained natural dolomite with increasing temperature represents a transition from twinning and slip with little or no recovery to dislocation creep, while the change in response of fine-grained synthetic dolomite represents a transition from crystal plasticity to diffusion creep. The combined results for coarse- and fine-grained dolomites define a deformation mechanism map with fields of crystal plasticity, dislocation creep, and diffusion creep. Strengths of coarse-grained dolomite in the crystal plastic and dislocation creep fields are much larger than strengths of calcite rocks deformed by similar mechanisms. In contrast, strengths of fine-grained dolomite deformed by diffusion creep are more comparable to those of fine-grained calcite, suggesting little contrast in rheology." @default.
- W1990757291 created "2016-06-24" @default.
- W1990757291 creator A5004053555 @default.
- W1990757291 creator A5036468953 @default.
- W1990757291 creator A5073122389 @default.
- W1990757291 date "2008-08-01" @default.
- W1990757291 modified "2023-10-05" @default.
- W1990757291 title "Plasticity and diffusion creep of dolomite" @default.
- W1990757291 cites W1965663356 @default.
- W1990757291 cites W1968941405 @default.
- W1990757291 cites W1970485285 @default.
- W1990757291 cites W1977953427 @default.
- W1990757291 cites W1978000377 @default.
- W1990757291 cites W1983635560 @default.
- W1990757291 cites W1988295807 @default.
- W1990757291 cites W1988888587 @default.
- W1990757291 cites W1989342650 @default.
- W1990757291 cites W1990718166 @default.
- W1990757291 cites W1992437057 @default.
- W1990757291 cites W1996229798 @default.
- W1990757291 cites W1996482226 @default.
- W1990757291 cites W1998185801 @default.
- W1990757291 cites W2002799950 @default.
- W1990757291 cites W2004144300 @default.
- W1990757291 cites W2004740719 @default.
- W1990757291 cites W2008998092 @default.
- W1990757291 cites W2015789171 @default.
- W1990757291 cites W2016304550 @default.
- W1990757291 cites W2016451495 @default.
- W1990757291 cites W2017374901 @default.
- W1990757291 cites W2020476034 @default.
- W1990757291 cites W2021622140 @default.
- W1990757291 cites W2023285280 @default.
- W1990757291 cites W2023399016 @default.
- W1990757291 cites W2026567833 @default.
- W1990757291 cites W2028347907 @default.
- W1990757291 cites W2029013008 @default.
- W1990757291 cites W2030586623 @default.
- W1990757291 cites W2033399546 @default.
- W1990757291 cites W2034000861 @default.
- W1990757291 cites W2039690366 @default.
- W1990757291 cites W2040953761 @default.
- W1990757291 cites W2042527650 @default.
- W1990757291 cites W2042820448 @default.
- W1990757291 cites W2044307335 @default.
- W1990757291 cites W2044379094 @default.
- W1990757291 cites W2052348707 @default.
- W1990757291 cites W2055698178 @default.
- W1990757291 cites W2064090986 @default.
- W1990757291 cites W2065377554 @default.
- W1990757291 cites W2066545426 @default.
- W1990757291 cites W2071236849 @default.
- W1990757291 cites W2072054215 @default.
- W1990757291 cites W2072782522 @default.
- W1990757291 cites W2074099721 @default.
- W1990757291 cites W2075655125 @default.
- W1990757291 cites W2077398971 @default.
- W1990757291 cites W2078500021 @default.
- W1990757291 cites W2082848475 @default.
- W1990757291 cites W2089631835 @default.
- W1990757291 cites W2093828505 @default.
- W1990757291 cites W2105999110 @default.
- W1990757291 cites W2108205606 @default.
- W1990757291 cites W2114274165 @default.
- W1990757291 cites W2123726990 @default.
- W1990757291 cites W2132029105 @default.
- W1990757291 cites W2133417404 @default.
- W1990757291 cites W2139437810 @default.
- W1990757291 cites W2139685710 @default.
- W1990757291 cites W2141875995 @default.
- W1990757291 cites W2151894425 @default.
- W1990757291 cites W2156535527 @default.
- W1990757291 cites W2243140970 @default.
- W1990757291 cites W4254755529 @default.
- W1990757291 doi "https://doi.org/10.1016/j.tecto.2008.02.002" @default.
- W1990757291 hasPublicationYear "2008" @default.
- W1990757291 type Work @default.
- W1990757291 sameAs 1990757291 @default.
- W1990757291 citedByCount "38" @default.
- W1990757291 countsByYear W19907572912012 @default.
- W1990757291 countsByYear W19907572912013 @default.
- W1990757291 countsByYear W19907572912014 @default.
- W1990757291 countsByYear W19907572912015 @default.
- W1990757291 countsByYear W19907572912016 @default.
- W1990757291 countsByYear W19907572912017 @default.
- W1990757291 countsByYear W19907572912018 @default.
- W1990757291 countsByYear W19907572912019 @default.
- W1990757291 countsByYear W19907572912020 @default.
- W1990757291 countsByYear W19907572912021 @default.
- W1990757291 countsByYear W19907572912023 @default.
- W1990757291 crossrefType "journal-article" @default.
- W1990757291 hasAuthorship W1990757291A5004053555 @default.
- W1990757291 hasAuthorship W1990757291A5036468953 @default.
- W1990757291 hasAuthorship W1990757291A5073122389 @default.
- W1990757291 hasConcept C121332964 @default.
- W1990757291 hasConcept C127313418 @default.
- W1990757291 hasConcept C149342994 @default.
- W1990757291 hasConcept C149912024 @default.