Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990804977> ?p ?o ?g. }
- W1990804977 endingPage "947" @default.
- W1990804977 startingPage "946" @default.
- W1990804977 abstract "No other method has opened the door to progress in nanoscience and nanotechnology as much as the introduction of scanning probe methods did in the 1980s, since they offer a way to visualize the nanoworld. For maximum impact, however, the ability to image and manipulate individual atoms is the key. Initially, scanning tunneling microscopy was the only scanning-probe-based method that was able to achieve this resolution. Atomic force microscopy (AFM), on the other hand, was quickly developed into a versatile tool with applications ranging from materials characterization in ultrahigh vacuum and nanofabrication under ambient conditions, to biological studies in liquids, but its resolution was limited to the nanometer scale.The reason for this restriction resulted from the fact that the resolution in probe microscopy scales with the sharpness of the tip. In conventional AFM operational modes, a tip that is located at the end of a leaf spring (the so-called cantilever) is either dragged over the surface in permanent contact or gently taps the surface while vibrating, and, whichever mode is used, tips quickly blunt through either permanent or intermittent contact. Maintaining the atomic sharpness of an initially atomically sharp tip requires that the tip never touches the surface. But how can the tip know that the surface is there if it is not allowed to touch? This problem was solved in the 1990s through the realization that the attractive forces acting on the tip when it is in close proximity to the sample affect the resonance frequency of the cantilever even though it is not in actual contact with the surface. Noncontact atomic force microscopy (NC-AFM) makes use of this effect by tracking the shift of the cantilever resonance frequency due to the force field of the surface without ever establishing physical contact between the tip and sample. Much to the astonishment of many, changes induced by individual atoms turned out to induce frequency shifts that are large enough to be detected, and thus atomic-scale imaging with AFM became a reality.Since the beginnings, almost two decades ago, NC-AFM has evolved into a powerful method that is able not just to image surfaces, but also to quantify tip–sample forces and interaction potentials as well as to manipulate individual atoms on conductors, semiconductors, and insulators alike. For the community to keep track of the rapid development in the field, a series of annual international conferences, starting in Osaka, Japan in 1998, has been established. The most recent conference from this series was held in Lindau, Germany, from September 18–22, 2011. Once again, substantial progress was presented; NC-AFM is now able to quantitatively map three-dimensional force fields of surfaces with atomic resolution in ultrahigh vacuum as well as in liquids, and methodological developments add more information to the measurements, for example, through the driving of higher cantilever harmonics or the recording of tunneling currents. For this Thematic Series of the Beilstein Journal of Nanotechnology, many of the presenters from the Lindau conference agreed to submit contributions in order to assemble a series that showcases the present state of the art in the field. I would like to thank all authors who have contributed their excellent original work to this series, all referees whose promptly provided reports have provided valuable suggestions for further improvements while keeping the publication times short, and the entire NC-AFM community for supporting the open access policy of the Beilstein Journal of Nanotechnology.Udo D. SchwarzNew Haven, February 2012" @default.
- W1990804977 created "2016-06-24" @default.
- W1990804977 creator A5061272320 @default.
- W1990804977 creator A5068097379 @default.
- W1990804977 date "2016-06-30" @default.
- W1990804977 modified "2023-09-27" @default.
- W1990804977 title "Noncontact atomic force microscopy III" @default.
- W1990804977 cites W1990804977 @default.
- W1990804977 cites W1995997145 @default.
- W1990804977 cites W2064351474 @default.
- W1990804977 cites W4231147166 @default.
- W1990804977 cites W4231243791 @default.
- W1990804977 cites W4240695975 @default.
- W1990804977 doi "https://doi.org/10.3762/bjnano.7.86" @default.
- W1990804977 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4979889" @default.
- W1990804977 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27547611" @default.
- W1990804977 hasPublicationYear "2016" @default.
- W1990804977 type Work @default.
- W1990804977 sameAs 1990804977 @default.
- W1990804977 citedByCount "39" @default.
- W1990804977 countsByYear W19908049772012 @default.
- W1990804977 countsByYear W19908049772013 @default.
- W1990804977 countsByYear W19908049772014 @default.
- W1990804977 countsByYear W19908049772015 @default.
- W1990804977 countsByYear W19908049772016 @default.
- W1990804977 countsByYear W19908049772017 @default.
- W1990804977 countsByYear W19908049772018 @default.
- W1990804977 countsByYear W19908049772019 @default.
- W1990804977 countsByYear W19908049772020 @default.
- W1990804977 crossrefType "journal-article" @default.
- W1990804977 hasAuthorship W1990804977A5061272320 @default.
- W1990804977 hasAuthorship W1990804977A5068097379 @default.
- W1990804977 hasBestOaLocation W19908049771 @default.
- W1990804977 hasConcept C102951782 @default.
- W1990804977 hasConcept C115260700 @default.
- W1990804977 hasConcept C120665830 @default.
- W1990804977 hasConcept C121332964 @default.
- W1990804977 hasConcept C136525101 @default.
- W1990804977 hasConcept C138268822 @default.
- W1990804977 hasConcept C141354745 @default.
- W1990804977 hasConcept C142724271 @default.
- W1990804977 hasConcept C147080431 @default.
- W1990804977 hasConcept C154945302 @default.
- W1990804977 hasConcept C159985019 @default.
- W1990804977 hasConcept C162117346 @default.
- W1990804977 hasConcept C16777580 @default.
- W1990804977 hasConcept C171250308 @default.
- W1990804977 hasConcept C181635281 @default.
- W1990804977 hasConcept C187921700 @default.
- W1990804977 hasConcept C192562407 @default.
- W1990804977 hasConcept C204787440 @default.
- W1990804977 hasConcept C205372480 @default.
- W1990804977 hasConcept C206008964 @default.
- W1990804977 hasConcept C2780841128 @default.
- W1990804977 hasConcept C32546565 @default.
- W1990804977 hasConcept C36628996 @default.
- W1990804977 hasConcept C41008148 @default.
- W1990804977 hasConcept C43826995 @default.
- W1990804977 hasConcept C62520636 @default.
- W1990804977 hasConcept C6518042 @default.
- W1990804977 hasConcept C71246147 @default.
- W1990804977 hasConcept C71924100 @default.
- W1990804977 hasConceptScore W1990804977C102951782 @default.
- W1990804977 hasConceptScore W1990804977C115260700 @default.
- W1990804977 hasConceptScore W1990804977C120665830 @default.
- W1990804977 hasConceptScore W1990804977C121332964 @default.
- W1990804977 hasConceptScore W1990804977C136525101 @default.
- W1990804977 hasConceptScore W1990804977C138268822 @default.
- W1990804977 hasConceptScore W1990804977C141354745 @default.
- W1990804977 hasConceptScore W1990804977C142724271 @default.
- W1990804977 hasConceptScore W1990804977C147080431 @default.
- W1990804977 hasConceptScore W1990804977C154945302 @default.
- W1990804977 hasConceptScore W1990804977C159985019 @default.
- W1990804977 hasConceptScore W1990804977C162117346 @default.
- W1990804977 hasConceptScore W1990804977C16777580 @default.
- W1990804977 hasConceptScore W1990804977C171250308 @default.
- W1990804977 hasConceptScore W1990804977C181635281 @default.
- W1990804977 hasConceptScore W1990804977C187921700 @default.
- W1990804977 hasConceptScore W1990804977C192562407 @default.
- W1990804977 hasConceptScore W1990804977C204787440 @default.
- W1990804977 hasConceptScore W1990804977C205372480 @default.
- W1990804977 hasConceptScore W1990804977C206008964 @default.
- W1990804977 hasConceptScore W1990804977C2780841128 @default.
- W1990804977 hasConceptScore W1990804977C32546565 @default.
- W1990804977 hasConceptScore W1990804977C36628996 @default.
- W1990804977 hasConceptScore W1990804977C41008148 @default.
- W1990804977 hasConceptScore W1990804977C43826995 @default.
- W1990804977 hasConceptScore W1990804977C62520636 @default.
- W1990804977 hasConceptScore W1990804977C6518042 @default.
- W1990804977 hasConceptScore W1990804977C71246147 @default.
- W1990804977 hasConceptScore W1990804977C71924100 @default.
- W1990804977 hasLocation W19908049771 @default.
- W1990804977 hasLocation W19908049772 @default.
- W1990804977 hasLocation W19908049773 @default.
- W1990804977 hasLocation W19908049774 @default.
- W1990804977 hasLocation W19908049775 @default.
- W1990804977 hasLocation W19908049776 @default.
- W1990804977 hasOpenAccess W1990804977 @default.