Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990834965> ?p ?o ?g. }
- W1990834965 endingPage "362" @default.
- W1990834965 startingPage "349" @default.
- W1990834965 abstract "Abstract In this article, we study production planning for a rolling horizon in which demands are known with certainty for a given number of periods in the future (the forecast window M). The rolling horizon approach implements only the earliest production decision before the model is rerun. The next production plan will again be based on M periods of future demand information, and its first lot‐sizing decision will be implemented. Six separate lot‐sizing methods were evaluated for use in a rolling schedule. These include the Wagner‐Whitin algorithm, the Silver‐Meal heuristic, Maximum Part‐Period Gain of Karni, Heuristics 1 and 2 of Bookbinder and Tan, and Modification 1 to the Silver‐Meal heuristic by Silver and Miltenburg. The performance of each lot‐sizing rule was studied for demands simulated from the following distributions: normal, uniform (each with four different standard deviations); bimodal uniform (two types); and trend seasonal (both increasing and decreasing trends). We considered four values of the setup cost (leading to natural ordering cycles in an EOQ model of three, four, five, and six periods) and forecast windows in the range 2 ⩽ M ⩽ 20. Eight 300‐period replications were performed for each combination of demand pattern, setup cost, and lot‐sizing method. The analysis thus required consideration of 2304 300‐period replications (6 lot‐sizing methods × 12 demand patterns × 4 values of setup cost × 8 realizations), each of which was solved for nineteen different values of the forecast window M. The performance of the lot‐sizing methods was evaluated on the basis of their average cost increase over the optimal solution to each 300‐period problem, as though all these demands were known initially. For smaller forecast windows, say 4 ⩽ M ⩽ 8, the most effective lot‐sizing rules were Heuristic 2 of Bookbinder and Tan and the modified Silver‐Meal heuristic. Rolling schedules from each were generally 1% to 5% in total cost above that of the optimal 300‐period solution. For larger forecast windows, M ⩾ 10 or so, the most effective lot‐sizing method was the Wagner‐Whitin algorithm. In agreement with other research on this problem, we found that the value of M at which the Wagner‐Whitin algorithm first becomes the most effective lot‐sizing rule is a decreasing function of the standard deviation of the demand distribution." @default.
- W1990834965 created "2016-06-24" @default.
- W1990834965 creator A5002701039 @default.
- W1990834965 creator A5006595093 @default.
- W1990834965 date "1986-05-01" @default.
- W1990834965 modified "2023-10-14" @default.
- W1990834965 title "Production lot sizing for deterministic rolling schedules" @default.
- W1990834965 cites W2013601750 @default.
- W1990834965 cites W2026117946 @default.
- W1990834965 cites W2034345086 @default.
- W1990834965 cites W2039251113 @default.
- W1990834965 cites W2040610035 @default.
- W1990834965 cites W2051956966 @default.
- W1990834965 cites W2066976645 @default.
- W1990834965 cites W2086265519 @default.
- W1990834965 cites W2094176165 @default.
- W1990834965 cites W2107329392 @default.
- W1990834965 cites W4256185527 @default.
- W1990834965 doi "https://doi.org/10.1016/0272-6963(86)90009-4" @default.
- W1990834965 hasPublicationYear "1986" @default.
- W1990834965 type Work @default.
- W1990834965 sameAs 1990834965 @default.
- W1990834965 citedByCount "24" @default.
- W1990834965 countsByYear W19908349652013 @default.
- W1990834965 countsByYear W19908349652014 @default.
- W1990834965 countsByYear W19908349652015 @default.
- W1990834965 countsByYear W19908349652017 @default.
- W1990834965 countsByYear W19908349652018 @default.
- W1990834965 countsByYear W19908349652020 @default.
- W1990834965 countsByYear W19908349652021 @default.
- W1990834965 countsByYear W19908349652022 @default.
- W1990834965 countsByYear W19908349652023 @default.
- W1990834965 crossrefType "journal-article" @default.
- W1990834965 hasAuthorship W1990834965A5002701039 @default.
- W1990834965 hasAuthorship W1990834965A5006595093 @default.
- W1990834965 hasConcept C108713360 @default.
- W1990834965 hasConcept C111919701 @default.
- W1990834965 hasConcept C1199943 @default.
- W1990834965 hasConcept C126255220 @default.
- W1990834965 hasConcept C127413603 @default.
- W1990834965 hasConcept C127705205 @default.
- W1990834965 hasConcept C139719470 @default.
- W1990834965 hasConcept C142362112 @default.
- W1990834965 hasConcept C146978453 @default.
- W1990834965 hasConcept C153349607 @default.
- W1990834965 hasConcept C162324750 @default.
- W1990834965 hasConcept C173801870 @default.
- W1990834965 hasConcept C17744445 @default.
- W1990834965 hasConcept C192365026 @default.
- W1990834965 hasConcept C193809577 @default.
- W1990834965 hasConcept C199539241 @default.
- W1990834965 hasConcept C204323151 @default.
- W1990834965 hasConcept C2777767291 @default.
- W1990834965 hasConcept C2778348673 @default.
- W1990834965 hasConcept C28761237 @default.
- W1990834965 hasConcept C33923547 @default.
- W1990834965 hasConcept C41008148 @default.
- W1990834965 hasConcept C42475967 @default.
- W1990834965 hasConcept C68387754 @default.
- W1990834965 hasConceptScore W1990834965C108713360 @default.
- W1990834965 hasConceptScore W1990834965C111919701 @default.
- W1990834965 hasConceptScore W1990834965C1199943 @default.
- W1990834965 hasConceptScore W1990834965C126255220 @default.
- W1990834965 hasConceptScore W1990834965C127413603 @default.
- W1990834965 hasConceptScore W1990834965C127705205 @default.
- W1990834965 hasConceptScore W1990834965C139719470 @default.
- W1990834965 hasConceptScore W1990834965C142362112 @default.
- W1990834965 hasConceptScore W1990834965C146978453 @default.
- W1990834965 hasConceptScore W1990834965C153349607 @default.
- W1990834965 hasConceptScore W1990834965C162324750 @default.
- W1990834965 hasConceptScore W1990834965C173801870 @default.
- W1990834965 hasConceptScore W1990834965C17744445 @default.
- W1990834965 hasConceptScore W1990834965C192365026 @default.
- W1990834965 hasConceptScore W1990834965C193809577 @default.
- W1990834965 hasConceptScore W1990834965C199539241 @default.
- W1990834965 hasConceptScore W1990834965C204323151 @default.
- W1990834965 hasConceptScore W1990834965C2777767291 @default.
- W1990834965 hasConceptScore W1990834965C2778348673 @default.
- W1990834965 hasConceptScore W1990834965C28761237 @default.
- W1990834965 hasConceptScore W1990834965C33923547 @default.
- W1990834965 hasConceptScore W1990834965C41008148 @default.
- W1990834965 hasConceptScore W1990834965C42475967 @default.
- W1990834965 hasConceptScore W1990834965C68387754 @default.
- W1990834965 hasIssue "3-4" @default.
- W1990834965 hasLocation W19908349651 @default.
- W1990834965 hasOpenAccess W1990834965 @default.
- W1990834965 hasPrimaryLocation W19908349651 @default.
- W1990834965 hasRelatedWork W1976405259 @default.
- W1990834965 hasRelatedWork W2116313473 @default.
- W1990834965 hasRelatedWork W2358339057 @default.
- W1990834965 hasRelatedWork W2361638145 @default.
- W1990834965 hasRelatedWork W2382292269 @default.
- W1990834965 hasRelatedWork W261483325 @default.
- W1990834965 hasRelatedWork W2974082098 @default.
- W1990834965 hasRelatedWork W3135906231 @default.
- W1990834965 hasRelatedWork W2183234648 @default.
- W1990834965 hasRelatedWork W2526143975 @default.
- W1990834965 hasVolume "6" @default.