Matches in SemOpenAlex for { <https://semopenalex.org/work/W1990986646> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1990986646 endingPage "229" @default.
- W1990986646 startingPage "205" @default.
- W1990986646 abstract "The view graph of a surface N in 3-space is a graph embedded in the space ν of centers or directions of projection, whose nodes correspond to maximal connected regions of ν which yield equivalent views of N. The size of the view graph of a piecewise smooth algebraic surface N with transverse self-intersection curves and isolated triple-points and cross-caps is O(n kdimν d 6dimν), where n and d denote the number of “component surfaces” of N and their maximal degree, respectively, and where K=6 in general or K=3 for N diffeomorphic to the boundary of a polyhedron. (For surfaces without cross-caps, this bound has been established in [17].) Also, for the special piecewise linear case, where d=1 and K=3, it is known that the size of the view graph is actually Θ(n 3dimν). It is shown that the exact view graphs of such surfaces can be determined in O(n K(2dimν+1)). · P(d, L) time by a deterministic algorithm and in O(n Kdimν+ε) · P(d, L) expected time by a randomized algorithm. Here P is some polynomial, L is the maximal coefficient size of the defining polynomials of N, and ε is an arbitrarily small positive constant. Note that the randomized algorithm is, in terms of combinatorial complexity (where d and L are assumed to be constants which do not depend on n), nearly optimal—its combinatorial time complexity exceeds the size of the view graph only by ε in the exponent." @default.
- W1990986646 created "2016-06-24" @default.
- W1990986646 creator A5035863493 @default.
- W1990986646 date "1998-06-01" @default.
- W1990986646 modified "2023-09-26" @default.
- W1990986646 title "Notes on the complexity of exact view graph algorithms for piecewise smooth Algebraic Surfaces" @default.
- W1990986646 cites W1815267262 @default.
- W1990986646 cites W1974597402 @default.
- W1990986646 cites W1986570437 @default.
- W1990986646 cites W1991581432 @default.
- W1990986646 cites W2021525343 @default.
- W1990986646 cites W2027982698 @default.
- W1990986646 cites W2058889860 @default.
- W1990986646 cites W2082916529 @default.
- W1990986646 cites W2104295951 @default.
- W1990986646 cites W2107453215 @default.
- W1990986646 cites W2116449994 @default.
- W1990986646 cites W2131499409 @default.
- W1990986646 cites W2138332656 @default.
- W1990986646 cites W2160563681 @default.
- W1990986646 cites W2331183998 @default.
- W1990986646 cites W4234682643 @default.
- W1990986646 cites W4241997832 @default.
- W1990986646 doi "https://doi.org/10.1007/pl00009383" @default.
- W1990986646 hasPublicationYear "1998" @default.
- W1990986646 type Work @default.
- W1990986646 sameAs 1990986646 @default.
- W1990986646 citedByCount "4" @default.
- W1990986646 crossrefType "journal-article" @default.
- W1990986646 hasAuthorship W1990986646A5035863493 @default.
- W1990986646 hasBestOaLocation W19909866461 @default.
- W1990986646 hasConcept C114614502 @default.
- W1990986646 hasConcept C118615104 @default.
- W1990986646 hasConcept C132525143 @default.
- W1990986646 hasConcept C134306372 @default.
- W1990986646 hasConcept C138885662 @default.
- W1990986646 hasConcept C164660894 @default.
- W1990986646 hasConcept C203776342 @default.
- W1990986646 hasConcept C22149727 @default.
- W1990986646 hasConcept C2780388253 @default.
- W1990986646 hasConcept C311688 @default.
- W1990986646 hasConcept C33923547 @default.
- W1990986646 hasConcept C41895202 @default.
- W1990986646 hasConcept C54540088 @default.
- W1990986646 hasConcept C56783289 @default.
- W1990986646 hasConcept C9376300 @default.
- W1990986646 hasConceptScore W1990986646C114614502 @default.
- W1990986646 hasConceptScore W1990986646C118615104 @default.
- W1990986646 hasConceptScore W1990986646C132525143 @default.
- W1990986646 hasConceptScore W1990986646C134306372 @default.
- W1990986646 hasConceptScore W1990986646C138885662 @default.
- W1990986646 hasConceptScore W1990986646C164660894 @default.
- W1990986646 hasConceptScore W1990986646C203776342 @default.
- W1990986646 hasConceptScore W1990986646C22149727 @default.
- W1990986646 hasConceptScore W1990986646C2780388253 @default.
- W1990986646 hasConceptScore W1990986646C311688 @default.
- W1990986646 hasConceptScore W1990986646C33923547 @default.
- W1990986646 hasConceptScore W1990986646C41895202 @default.
- W1990986646 hasConceptScore W1990986646C54540088 @default.
- W1990986646 hasConceptScore W1990986646C56783289 @default.
- W1990986646 hasConceptScore W1990986646C9376300 @default.
- W1990986646 hasIssue "2" @default.
- W1990986646 hasLocation W19909866461 @default.
- W1990986646 hasOpenAccess W1990986646 @default.
- W1990986646 hasPrimaryLocation W19909866461 @default.
- W1990986646 hasRelatedWork W1913458311 @default.
- W1990986646 hasRelatedWork W2011772662 @default.
- W1990986646 hasRelatedWork W2049807202 @default.
- W1990986646 hasRelatedWork W2282648397 @default.
- W1990986646 hasRelatedWork W2396667330 @default.
- W1990986646 hasRelatedWork W2567779821 @default.
- W1990986646 hasRelatedWork W2603499936 @default.
- W1990986646 hasRelatedWork W2950880198 @default.
- W1990986646 hasRelatedWork W4312618201 @default.
- W1990986646 hasRelatedWork W1842855190 @default.
- W1990986646 hasVolume "20" @default.
- W1990986646 isParatext "false" @default.
- W1990986646 isRetracted "false" @default.
- W1990986646 magId "1990986646" @default.
- W1990986646 workType "article" @default.