Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991001610> ?p ?o ?g. }
- W1991001610 endingPage "1329" @default.
- W1991001610 startingPage "1307" @default.
- W1991001610 abstract "The production of coalbed methane (CBM) represents a vital new source of natural gas supply in Western Canada. There are, however, concerns over potential negative environmental impacts on shallow groundwater resources in the hypothetical case that leakage of fluids and gases from CBM operations occurs. This paper compares major ion and isotope geochemistry data for produced fluids or gases from two major coal deposits in Western Canada (Mannville Formation and the Horseshoe Canyon/Belly River Group) with similar data collected for shallow groundwater in south-central Alberta. The objective was to generate comprehensive baseline geochemical data to determine the key geochemical characteristics and differences of produced fluids and gases from two coal deposits and shallow groundwater in Alberta and to find parameters that are suitable for identifying potential leakage of fluids or gases into shallow groundwater. Shallow groundwater had average total dissolved solids (TDS) of 1037 mg/L. Most samples belonged to the Na–HCO3–SO4 water type and average SO42- concentrations were 185 mg/L. The Horseshoe Canyon/Belly River Group swabbing fluids had average TDS of 5427 mg/L, a Na–HCO3 water type, and average SO42- concentrations of 47.7 mg/L. The produced fluids from the Mannville Formation had average TDS contents of 74,500 mg/L, negligible SO42- and a Na–Cl water type. Shallow groundwater and produced fluids from the Horseshoe Canyon Formation and the Mannville group had distinct δ2H and δ18O values and plotting δ18O values versus total dissolved solids was found to be an effective approach to distinguish the waters. Sulfur isotope data revealed the occurrence of bacterial (dissimilatory) SO4 reduction in some shallow groundwater samples and in the produced fluids from the Horseshoe Canyon/Belly River Group. Methane was found in several shallow groundwater samples and its average δ13C (−72.1 ± 6.8‰) and δ2H values (−297 ± 17‰) indicated a biogenic origin predominantly from CO2 reduction. Dissolved gases from the Horseshoe Canyon Formation fluids with average δ13C values of methane of −54.0 ± 4.1‰ and ethane of −36.5 ± 2.4‰ and traces of higher alkanes suggest a mixture of predominantly biogenic and some thermogenic gas. Dissolved hydrocarbon gas from the Mannville Formation had the highest average δ13C values of −49.4 ± 3.6‰ for methane, −28.8 ± 2.1‰ for ethane and −26.9 ± 1.1‰ for propane. The presence of higher alkanes suggests that the Mannville produced fluids contain an appreciable thermogenic gas component. The biogenic gas component in the Horseshoe Canyon and the Mannville Formation was mainly formed via acetate fermentation according to αCO2–CH4 values between 1.02 and 1.07. It is concluded that δ18O values of the fluids in concert with total dissolved solids, and the isotopic compositions of methane and ethane are sufficiently distinct in shallow groundwater and produced fluids from the Horseshoe Canyon and the Mannville Formations that they may serve as tracers for evaluating potential contamination of shallow groundwater with produced fluids or gases." @default.
- W1991001610 created "2016-06-24" @default.
- W1991001610 creator A5014315717 @default.
- W1991001610 creator A5018312750 @default.
- W1991001610 creator A5034994294 @default.
- W1991001610 creator A5056848342 @default.
- W1991001610 creator A5080716240 @default.
- W1991001610 date "2010-09-01" @default.
- W1991001610 modified "2023-10-15" @default.
- W1991001610 title "Major ion and isotope geochemistry of fluids and gases from coalbed methane and shallow groundwater wells in Alberta, Canada" @default.
- W1991001610 cites W1513384650 @default.
- W1991001610 cites W1991837951 @default.
- W1991001610 cites W1992814194 @default.
- W1991001610 cites W1996779796 @default.
- W1991001610 cites W1998523005 @default.
- W1991001610 cites W2000668024 @default.
- W1991001610 cites W2005601255 @default.
- W1991001610 cites W2008680648 @default.
- W1991001610 cites W2014467701 @default.
- W1991001610 cites W2021481398 @default.
- W1991001610 cites W2024746217 @default.
- W1991001610 cites W2026702923 @default.
- W1991001610 cites W2032597545 @default.
- W1991001610 cites W2032854853 @default.
- W1991001610 cites W2035607178 @default.
- W1991001610 cites W2035778176 @default.
- W1991001610 cites W2036726130 @default.
- W1991001610 cites W2039248536 @default.
- W1991001610 cites W2042217508 @default.
- W1991001610 cites W2042739479 @default.
- W1991001610 cites W2045047668 @default.
- W1991001610 cites W2045171509 @default.
- W1991001610 cites W2048305276 @default.
- W1991001610 cites W2057164798 @default.
- W1991001610 cites W2062061038 @default.
- W1991001610 cites W2070022169 @default.
- W1991001610 cites W2079879613 @default.
- W1991001610 cites W2080740049 @default.
- W1991001610 cites W2081628129 @default.
- W1991001610 cites W2083266324 @default.
- W1991001610 cites W2084243379 @default.
- W1991001610 cites W2094588720 @default.
- W1991001610 cites W2107961026 @default.
- W1991001610 cites W2109428383 @default.
- W1991001610 cites W2109950624 @default.
- W1991001610 cites W2112440348 @default.
- W1991001610 cites W2115495633 @default.
- W1991001610 cites W2127814374 @default.
- W1991001610 cites W2133751091 @default.
- W1991001610 cites W2134813862 @default.
- W1991001610 cites W2141319426 @default.
- W1991001610 cites W2141520975 @default.
- W1991001610 cites W2163605228 @default.
- W1991001610 cites W2183147524 @default.
- W1991001610 cites W3097920577 @default.
- W1991001610 cites W4251817954 @default.
- W1991001610 doi "https://doi.org/10.1016/j.apgeochem.2010.06.002" @default.
- W1991001610 hasPublicationYear "2010" @default.
- W1991001610 type Work @default.
- W1991001610 sameAs 1991001610 @default.
- W1991001610 citedByCount "80" @default.
- W1991001610 countsByYear W19910016102012 @default.
- W1991001610 countsByYear W19910016102013 @default.
- W1991001610 countsByYear W19910016102014 @default.
- W1991001610 countsByYear W19910016102015 @default.
- W1991001610 countsByYear W19910016102016 @default.
- W1991001610 countsByYear W19910016102017 @default.
- W1991001610 countsByYear W19910016102018 @default.
- W1991001610 countsByYear W19910016102019 @default.
- W1991001610 countsByYear W19910016102020 @default.
- W1991001610 countsByYear W19910016102021 @default.
- W1991001610 countsByYear W19910016102022 @default.
- W1991001610 countsByYear W19910016102023 @default.
- W1991001610 crossrefType "journal-article" @default.
- W1991001610 hasAuthorship W1991001610A5014315717 @default.
- W1991001610 hasAuthorship W1991001610A5018312750 @default.
- W1991001610 hasAuthorship W1991001610A5034994294 @default.
- W1991001610 hasAuthorship W1991001610A5056848342 @default.
- W1991001610 hasAuthorship W1991001610A5080716240 @default.
- W1991001610 hasConcept C108615695 @default.
- W1991001610 hasConcept C114793014 @default.
- W1991001610 hasConcept C121332964 @default.
- W1991001610 hasConcept C127313418 @default.
- W1991001610 hasConcept C129360787 @default.
- W1991001610 hasConcept C17409809 @default.
- W1991001610 hasConcept C178790620 @default.
- W1991001610 hasConcept C185592680 @default.
- W1991001610 hasConcept C187320778 @default.
- W1991001610 hasConcept C22117777 @default.
- W1991001610 hasConcept C2775865663 @default.
- W1991001610 hasConcept C2776469828 @default.
- W1991001610 hasConcept C39432304 @default.
- W1991001610 hasConcept C518851703 @default.
- W1991001610 hasConcept C59427239 @default.
- W1991001610 hasConcept C62520636 @default.
- W1991001610 hasConcept C69384203 @default.
- W1991001610 hasConcept C75622301 @default.
- W1991001610 hasConcept C76177295 @default.