Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991023460> ?p ?o ?g. }
- W1991023460 endingPage "2044" @default.
- W1991023460 startingPage "2029" @default.
- W1991023460 abstract "Inspired by the biological nervous system, an artificial neural network (ANN) approach is a fascinating mathematical tool, which can be used to simulate a wide variety of complex scientific and engineering problems. A powerful ANN function is determined largely by the interconnections between artificial neurons, similar to those occurring in their natural counterparts of biological systems. Also in polymer composites, a certain amount of experimental results is required to train a well-designed neural network. After the network has learned to solve the material problems, new data from the similar domain can then be predicted without performing too many, long experiments. The objective of using ANNs is also to apply this tool for systematic parameter studies in the optimum design of composite materials for specific applications. In the present review, various principles of the neural network approach for predicting certain properties of polymer composite materials are discussed. These include fatigue life, wear performance, response under combined loading situations, and dynamic mechanical properties. Additionally, the ANN approach has been applied to composite processing optimizations. The goal of this review is to promote more consideration of using ANNs in the field of polymer composite property prediction and design." @default.
- W1991023460 created "2016-06-24" @default.
- W1991023460 creator A5000363931 @default.
- W1991023460 creator A5081030140 @default.
- W1991023460 date "2003-11-01" @default.
- W1991023460 modified "2023-10-16" @default.
- W1991023460 title "Artificial neural networks applied to polymer composites: a review" @default.
- W1991023460 cites W1963984515 @default.
- W1991023460 cites W1965629275 @default.
- W1991023460 cites W1972085266 @default.
- W1991023460 cites W1974271766 @default.
- W1991023460 cites W1974495676 @default.
- W1991023460 cites W1975393968 @default.
- W1991023460 cites W1984989594 @default.
- W1991023460 cites W1986413205 @default.
- W1991023460 cites W1986908581 @default.
- W1991023460 cites W1989088519 @default.
- W1991023460 cites W1991298538 @default.
- W1991023460 cites W1992171740 @default.
- W1991023460 cites W1994615074 @default.
- W1991023460 cites W1998055383 @default.
- W1991023460 cites W2001356644 @default.
- W1991023460 cites W2009785953 @default.
- W1991023460 cites W2011187461 @default.
- W1991023460 cites W2012808413 @default.
- W1991023460 cites W2014402371 @default.
- W1991023460 cites W2016862762 @default.
- W1991023460 cites W2033611930 @default.
- W1991023460 cites W2036590242 @default.
- W1991023460 cites W2036709418 @default.
- W1991023460 cites W2041736638 @default.
- W1991023460 cites W2045191768 @default.
- W1991023460 cites W2049034874 @default.
- W1991023460 cites W2051576668 @default.
- W1991023460 cites W2052505511 @default.
- W1991023460 cites W2052869522 @default.
- W1991023460 cites W2054754519 @default.
- W1991023460 cites W2057753856 @default.
- W1991023460 cites W2060501580 @default.
- W1991023460 cites W2062894630 @default.
- W1991023460 cites W2066103281 @default.
- W1991023460 cites W2068751742 @default.
- W1991023460 cites W2070371116 @default.
- W1991023460 cites W2073530414 @default.
- W1991023460 cites W2086221485 @default.
- W1991023460 cites W2086812468 @default.
- W1991023460 cites W2088152209 @default.
- W1991023460 cites W2088874310 @default.
- W1991023460 cites W2105192472 @default.
- W1991023460 cites W2108360120 @default.
- W1991023460 cites W2119235671 @default.
- W1991023460 cites W2128091624 @default.
- W1991023460 cites W2130998834 @default.
- W1991023460 cites W227690078 @default.
- W1991023460 doi "https://doi.org/10.1016/s0266-3538(03)00106-4" @default.
- W1991023460 hasPublicationYear "2003" @default.
- W1991023460 type Work @default.
- W1991023460 sameAs 1991023460 @default.
- W1991023460 citedByCount "461" @default.
- W1991023460 countsByYear W19910234602012 @default.
- W1991023460 countsByYear W19910234602013 @default.
- W1991023460 countsByYear W19910234602014 @default.
- W1991023460 countsByYear W19910234602015 @default.
- W1991023460 countsByYear W19910234602016 @default.
- W1991023460 countsByYear W19910234602017 @default.
- W1991023460 countsByYear W19910234602018 @default.
- W1991023460 countsByYear W19910234602019 @default.
- W1991023460 countsByYear W19910234602020 @default.
- W1991023460 countsByYear W19910234602021 @default.
- W1991023460 countsByYear W19910234602022 @default.
- W1991023460 countsByYear W19910234602023 @default.
- W1991023460 crossrefType "journal-article" @default.
- W1991023460 hasAuthorship W1991023460A5000363931 @default.
- W1991023460 hasAuthorship W1991023460A5081030140 @default.
- W1991023460 hasConcept C104779481 @default.
- W1991023460 hasConcept C134306372 @default.
- W1991023460 hasConcept C154945302 @default.
- W1991023460 hasConcept C159985019 @default.
- W1991023460 hasConcept C186060115 @default.
- W1991023460 hasConcept C192562407 @default.
- W1991023460 hasConcept C202444582 @default.
- W1991023460 hasConcept C33923547 @default.
- W1991023460 hasConcept C36503486 @default.
- W1991023460 hasConcept C41008148 @default.
- W1991023460 hasConcept C50644808 @default.
- W1991023460 hasConcept C521977710 @default.
- W1991023460 hasConcept C86803240 @default.
- W1991023460 hasConcept C9652623 @default.
- W1991023460 hasConceptScore W1991023460C104779481 @default.
- W1991023460 hasConceptScore W1991023460C134306372 @default.
- W1991023460 hasConceptScore W1991023460C154945302 @default.
- W1991023460 hasConceptScore W1991023460C159985019 @default.
- W1991023460 hasConceptScore W1991023460C186060115 @default.
- W1991023460 hasConceptScore W1991023460C192562407 @default.
- W1991023460 hasConceptScore W1991023460C202444582 @default.
- W1991023460 hasConceptScore W1991023460C33923547 @default.
- W1991023460 hasConceptScore W1991023460C36503486 @default.
- W1991023460 hasConceptScore W1991023460C41008148 @default.