Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991045633> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W1991045633 endingPage "432" @default.
- W1991045633 startingPage "409" @default.
- W1991045633 abstract "A characterization of partial metrizability is given which provides a partial solution to an open problem stated by Künzi in the survey paper Non-symmetric Topology (in: Proceedings of the Szekszard Conference, Bolyai Soc. Math. Studies, Vol. 4, 1993, pp. 303–338; problem 71). The characterization yields a powerful tool which establishes a correspondence between partial metrics and special types of valuations, referred to as Q-valuations (cf. also Theoret. Comput. Sci., to appear). The notion of a Q-valuation essentially combines the well-known notion of a valuation with a weaker version of the notion of a quasi-unimorphism, i.e. an isomorphism in the context of quasi-uniform spaces. As an application, we show that ω-continuous directed complete partial orders (dcpos) are quantifiable in the sense of O'Neill (in: S. Andima et al. (Eds.), Proceedings of the 11th Summer Conference on General Topology and Applications, Annals of the New York Academy of Sciences, Vol. 86, 1997, pp. 304–315), i.e. the Scott topology and partial order are induced by a partial metric. For ω-algebraic dcpos the Lawson topology is induced by the associated metric. The partial metrization of general domains improves prior approaches in two ways: The partial metric is guaranteed to capture the Scott topology as opposed to e.g. Smyth (Quasi-uniformities: Reconciling Domains with Metric Spaces, Lecture Notes in Computer Science, Vol. 298, Springer, Berlin, 1987, pp. 236–253), Bonsangue et al. (Theoret. Comput. Sci. 193 (1998) 1), Flagg (Theoret. Comput. Sci., to appear) and Flagg (Theoret. Comput. Sci. 177 (1) (1997) 1), which in general yield a coarser topology. Partial metric spaces are Smyth-completable and hence their Smyth-completion reduces to the standard bicompletion. This type of simplification is advocated in Smyth (in: G.M. Reed, A.W. Roscoe, R.F. Wachter (Eds.), Topology and Category Theory in Computer Science, Oxford University Press, Oxford, 1991, pp. 207–229). Our results extend Smyth (1991)'s scope of application from the context of 2/3 SFP domains to general domains. The quantification of general domains solves an open problem on the partial metrizability of domains2 stated in O'Neil (1997) and Heckmann (Appl. Categor. Struct. (1999) 71). Our proof of the quantifiability of domains is novel in that it relies on the central notion of a semivaluation (Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci., to appear). The characterization of partial metrizability is entirely new and sheds light on the deeper connections between partial metrics and valuations commented on in [Bukatin and Shorina (in: M. Nivat (Ed.), Foundations of Software Science and Computation Structures, Lecture Notes in Computer Science, Vol. 1378, Springer, Berlin, 1998, pp. 125–139)]. Based on (Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci., to appear) and our present characterization, we conclude that the notion of a (semi)valuation is central in the context of Quantitative Domain Theory since it can be shown to underlie the various models arising in the applications." @default.
- W1991045633 created "2016-06-24" @default.
- W1991045633 creator A5016654758 @default.
- W1991045633 date "2003-08-01" @default.
- W1991045633 modified "2023-09-23" @default.
- W1991045633 title "A characterization of partial metrizability: domains are quantifiable" @default.
- W1991045633 cites W1524112282 @default.
- W1991045633 cites W1557973150 @default.
- W1991045633 cites W1559626229 @default.
- W1991045633 cites W1668904657 @default.
- W1991045633 cites W1745061996 @default.
- W1991045633 cites W1966825584 @default.
- W1991045633 cites W2001923225 @default.
- W1991045633 cites W2018131399 @default.
- W1991045633 cites W2026278715 @default.
- W1991045633 cites W2028226764 @default.
- W1991045633 cites W2047277075 @default.
- W1991045633 cites W2065220161 @default.
- W1991045633 cites W2076019225 @default.
- W1991045633 cites W2081233506 @default.
- W1991045633 cites W2082829593 @default.
- W1991045633 cites W2087031585 @default.
- W1991045633 cites W2092482475 @default.
- W1991045633 cites W2094576521 @default.
- W1991045633 cites W2110149567 @default.
- W1991045633 cites W2155748644 @default.
- W1991045633 cites W2326044695 @default.
- W1991045633 cites W4214910321 @default.
- W1991045633 cites W4230994642 @default.
- W1991045633 doi "https://doi.org/10.1016/s0304-3975(02)00705-3" @default.
- W1991045633 hasPublicationYear "2003" @default.
- W1991045633 type Work @default.
- W1991045633 sameAs 1991045633 @default.
- W1991045633 citedByCount "81" @default.
- W1991045633 countsByYear W19910456332012 @default.
- W1991045633 countsByYear W19910456332013 @default.
- W1991045633 countsByYear W19910456332014 @default.
- W1991045633 countsByYear W19910456332015 @default.
- W1991045633 countsByYear W19910456332016 @default.
- W1991045633 countsByYear W19910456332017 @default.
- W1991045633 countsByYear W19910456332018 @default.
- W1991045633 countsByYear W19910456332019 @default.
- W1991045633 countsByYear W19910456332020 @default.
- W1991045633 countsByYear W19910456332021 @default.
- W1991045633 countsByYear W19910456332022 @default.
- W1991045633 countsByYear W19910456332023 @default.
- W1991045633 crossrefType "journal-article" @default.
- W1991045633 hasAuthorship W1991045633A5016654758 @default.
- W1991045633 hasBestOaLocation W19910456331 @default.
- W1991045633 hasConcept C114614502 @default.
- W1991045633 hasConcept C118615104 @default.
- W1991045633 hasConcept C134306372 @default.
- W1991045633 hasConcept C151730666 @default.
- W1991045633 hasConcept C171250308 @default.
- W1991045633 hasConcept C184720557 @default.
- W1991045633 hasConcept C192562407 @default.
- W1991045633 hasConcept C198043062 @default.
- W1991045633 hasConcept C202444582 @default.
- W1991045633 hasConcept C2779343474 @default.
- W1991045633 hasConcept C2780841128 @default.
- W1991045633 hasConcept C33923547 @default.
- W1991045633 hasConcept C86803240 @default.
- W1991045633 hasConcept C9376300 @default.
- W1991045633 hasConceptScore W1991045633C114614502 @default.
- W1991045633 hasConceptScore W1991045633C118615104 @default.
- W1991045633 hasConceptScore W1991045633C134306372 @default.
- W1991045633 hasConceptScore W1991045633C151730666 @default.
- W1991045633 hasConceptScore W1991045633C171250308 @default.
- W1991045633 hasConceptScore W1991045633C184720557 @default.
- W1991045633 hasConceptScore W1991045633C192562407 @default.
- W1991045633 hasConceptScore W1991045633C198043062 @default.
- W1991045633 hasConceptScore W1991045633C202444582 @default.
- W1991045633 hasConceptScore W1991045633C2779343474 @default.
- W1991045633 hasConceptScore W1991045633C2780841128 @default.
- W1991045633 hasConceptScore W1991045633C33923547 @default.
- W1991045633 hasConceptScore W1991045633C86803240 @default.
- W1991045633 hasConceptScore W1991045633C9376300 @default.
- W1991045633 hasIssue "1-3" @default.
- W1991045633 hasLocation W19910456331 @default.
- W1991045633 hasOpenAccess W1991045633 @default.
- W1991045633 hasPrimaryLocation W19910456331 @default.
- W1991045633 hasRelatedWork W1971871035 @default.
- W1991045633 hasRelatedWork W2008268994 @default.
- W1991045633 hasRelatedWork W2077696093 @default.
- W1991045633 hasRelatedWork W2096753949 @default.
- W1991045633 hasRelatedWork W2156777494 @default.
- W1991045633 hasRelatedWork W2230717410 @default.
- W1991045633 hasRelatedWork W2333313290 @default.
- W1991045633 hasRelatedWork W2941394577 @default.
- W1991045633 hasRelatedWork W4249580765 @default.
- W1991045633 hasRelatedWork W1587207900 @default.
- W1991045633 hasVolume "305" @default.
- W1991045633 isParatext "false" @default.
- W1991045633 isRetracted "false" @default.
- W1991045633 magId "1991045633" @default.
- W1991045633 workType "article" @default.