Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991332482> ?p ?o ?g. }
- W1991332482 endingPage "32" @default.
- W1991332482 startingPage "1" @default.
- W1991332482 abstract "Accurate prediction of user behaviors is important for many social media applications, including social marketing, personalization, and recommendation. A major challenge lies in that although many previous works model user behavior from only historical behavior logs, the available user behavior data or interactions between users and items in a given social network are usually very limited and sparse (e.g., ⩾ 99.9% empty), which makes models overfit the rare observations and fail to provide accurate predictions. We observe that many people are members of several social networks in the same time, such as Facebook, Twitter, and Tencent’s QQ. Importantly, users’ behaviors and interests in different networks influence one another. This provides an opportunity to leverage the knowledge of user behaviors in different networks by considering the overlapping users in different networks as bridges, in order to alleviate the data sparsity problem, and enhance the predictive performance of user behavior modeling. Combining different networks “simply and naively” does not work well. In this article, we formulate the problem to model multiple networks as “adaptive composite transfer” and propose a framework called ComSoc . ComSoc first selects the most suitable networks inside a composite social network via a hierarchical Bayesian model, parameterized for individual users. It then builds topic models for user behavior prediction using both the relationships in the selected networks and related behavior data. With different relational regularization, we introduce different implementations, corresponding to different ways to transfer knowledge from composite social relations. To handle big data, we have implemented the algorithm using Map/Reduce. We demonstrate that the proposed composite network-based user behavior models significantly improve the predictive accuracy over a number of existing approaches on several real-world applications, including a very large social networking dataset from Tencent Inc." @default.
- W1991332482 created "2016-06-24" @default.
- W1991332482 creator A5018132761 @default.
- W1991332482 creator A5038836690 @default.
- W1991332482 creator A5053654789 @default.
- W1991332482 date "2014-02-01" @default.
- W1991332482 modified "2023-10-16" @default.
- W1991332482 title "User behavior learning and transfer in composite social networks" @default.
- W1991332482 cites W1502375784 @default.
- W1991332482 cites W1581604130 @default.
- W1991332482 cites W1648445109 @default.
- W1991332482 cites W1654194294 @default.
- W1991332482 cites W1880262756 @default.
- W1991332482 cites W1973956316 @default.
- W1991332482 cites W1994389483 @default.
- W1991332482 cites W2041517243 @default.
- W1991332482 cites W2042281163 @default.
- W1991332482 cites W2049455633 @default.
- W1991332482 cites W2098711168 @default.
- W1991332482 cites W2099866409 @default.
- W1991332482 cites W2108858998 @default.
- W1991332482 cites W2109154616 @default.
- W1991332482 cites W2110724311 @default.
- W1991332482 cites W2111002549 @default.
- W1991332482 cites W2122838776 @default.
- W1991332482 cites W2124052064 @default.
- W1991332482 cites W2128678576 @default.
- W1991332482 cites W2131717044 @default.
- W1991332482 cites W2134982367 @default.
- W1991332482 cites W2135790056 @default.
- W1991332482 cites W2136583165 @default.
- W1991332482 cites W2144487656 @default.
- W1991332482 cites W2145677303 @default.
- W1991332482 cites W2146341620 @default.
- W1991332482 cites W2152755144 @default.
- W1991332482 cites W2155106456 @default.
- W1991332482 cites W2157339239 @default.
- W1991332482 cites W2157579446 @default.
- W1991332482 cites W2161047120 @default.
- W1991332482 cites W2165636119 @default.
- W1991332482 cites W2165698076 @default.
- W1991332482 cites W2166293769 @default.
- W1991332482 cites W2173213060 @default.
- W1991332482 cites W2420733993 @default.
- W1991332482 doi "https://doi.org/10.1145/2556613" @default.
- W1991332482 hasPublicationYear "2014" @default.
- W1991332482 type Work @default.
- W1991332482 sameAs 1991332482 @default.
- W1991332482 citedByCount "33" @default.
- W1991332482 countsByYear W19913324822014 @default.
- W1991332482 countsByYear W19913324822015 @default.
- W1991332482 countsByYear W19913324822016 @default.
- W1991332482 countsByYear W19913324822017 @default.
- W1991332482 countsByYear W19913324822018 @default.
- W1991332482 countsByYear W19913324822019 @default.
- W1991332482 countsByYear W19913324822020 @default.
- W1991332482 countsByYear W19913324822021 @default.
- W1991332482 countsByYear W19913324822022 @default.
- W1991332482 countsByYear W19913324822023 @default.
- W1991332482 crossrefType "journal-article" @default.
- W1991332482 hasAuthorship W1991332482A5018132761 @default.
- W1991332482 hasAuthorship W1991332482A5038836690 @default.
- W1991332482 hasAuthorship W1991332482A5053654789 @default.
- W1991332482 hasConcept C111919701 @default.
- W1991332482 hasConcept C11413529 @default.
- W1991332482 hasConcept C119857082 @default.
- W1991332482 hasConcept C136764020 @default.
- W1991332482 hasConcept C150899416 @default.
- W1991332482 hasConcept C153083717 @default.
- W1991332482 hasConcept C154945302 @default.
- W1991332482 hasConcept C165464430 @default.
- W1991332482 hasConcept C183003079 @default.
- W1991332482 hasConcept C22019652 @default.
- W1991332482 hasConcept C2522767166 @default.
- W1991332482 hasConcept C41008148 @default.
- W1991332482 hasConcept C4727928 @default.
- W1991332482 hasConcept C50644808 @default.
- W1991332482 hasConcept C518677369 @default.
- W1991332482 hasConcept C67712803 @default.
- W1991332482 hasConcept C89505385 @default.
- W1991332482 hasConceptScore W1991332482C111919701 @default.
- W1991332482 hasConceptScore W1991332482C11413529 @default.
- W1991332482 hasConceptScore W1991332482C119857082 @default.
- W1991332482 hasConceptScore W1991332482C136764020 @default.
- W1991332482 hasConceptScore W1991332482C150899416 @default.
- W1991332482 hasConceptScore W1991332482C153083717 @default.
- W1991332482 hasConceptScore W1991332482C154945302 @default.
- W1991332482 hasConceptScore W1991332482C165464430 @default.
- W1991332482 hasConceptScore W1991332482C183003079 @default.
- W1991332482 hasConceptScore W1991332482C22019652 @default.
- W1991332482 hasConceptScore W1991332482C2522767166 @default.
- W1991332482 hasConceptScore W1991332482C41008148 @default.
- W1991332482 hasConceptScore W1991332482C4727928 @default.
- W1991332482 hasConceptScore W1991332482C50644808 @default.
- W1991332482 hasConceptScore W1991332482C518677369 @default.
- W1991332482 hasConceptScore W1991332482C67712803 @default.
- W1991332482 hasConceptScore W1991332482C89505385 @default.
- W1991332482 hasFunder F4320321592 @default.