Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991343764> ?p ?o ?g. }
- W1991343764 endingPage "228" @default.
- W1991343764 startingPage "217" @default.
- W1991343764 abstract "The nitrates (NO3–N) lost through subsurface drainage in the Midwest often exceed concentrations that cause deleterious effects on the receiving streams and lead to hypoxic conditions in the northern Gulf of Mexico. The use of drainage and water quality models along with observed data analysis may provide new insight into the water and nutrient balance in drained agricultural lands and enable evaluation of appropriate measures for reducing NO3–N losses. DRAINMOD-NII, a carbon (C) and nitrogen (N) simulation model, was field tested for the high organic matter Drummer soil in Indiana and used to predict the effects of fertilizer application rate and drainage water management (DWM) on NO3–N losses through subsurface drainage. The model was calibrated and validated for continuous corn (Zea mays L.) (CC) and corn–soybean [Glycine max (L.) Merr.] (CS) rotation treatments separately using 7 yr of drain flow and NO3–N concentration data. Among the treatments, the Nash-Sutcliffe efficiency of the monthly NO3–N loss predictions ranged from 0.30 to 0.86, and the percent error varied from −19 to 9%. The medians of the observed and predicted monthly NO3–N losses were not significantly different. When the fertilizer application rate was reduced ∼20%, the predicted NO3–N losses in drain flow from the CC treatments was reduced 17% (95% confidence interval [CI], 11–25), while losses from the CS treatment were reduced by 10% (95% CI, 1–15). With DWM, the predicted average annual drain flow was reduced by about 56% (95% CI, 49–67), while the average annual NO3–N losses through drain flow were reduced by about 46% (95% CI, 32–57) for both tested crop rotations. However, the simulated NO3–N losses in surface runoff increased by about 3 to 4 kg ha−1 with DWM. For the simulated conditions at the study site, implementing DWM along with reduced fertilizer application rates would be the best strategy to achieve the highest NO3–N loss reductions to surface water. The suggested best strategies would reduce the NO3–N losses to surface water by 38% (95% CI, 29–46) for the CC treatments and by 32% (95% CI, 23–40) for the CS treatments." @default.
- W1991343764 created "2016-06-24" @default.
- W1991343764 creator A5005763595 @default.
- W1991343764 creator A5012027800 @default.
- W1991343764 creator A5027511226 @default.
- W1991343764 creator A5044266914 @default.
- W1991343764 date "2012-01-01" @default.
- W1991343764 modified "2023-10-18" @default.
- W1991343764 title "Evaluation of Simulated Strategies for Reducing Nitrate–Nitrogen Losses through Subsurface Drainage Systems" @default.
- W1991343764 cites W1966033020 @default.
- W1991343764 cites W1966930650 @default.
- W1991343764 cites W1973835893 @default.
- W1991343764 cites W1974547664 @default.
- W1991343764 cites W1974553158 @default.
- W1991343764 cites W1977238148 @default.
- W1991343764 cites W1980496159 @default.
- W1991343764 cites W1984136567 @default.
- W1991343764 cites W1986450592 @default.
- W1991343764 cites W1994715260 @default.
- W1991343764 cites W1995766444 @default.
- W1991343764 cites W1997145284 @default.
- W1991343764 cites W1998303796 @default.
- W1991343764 cites W2013532420 @default.
- W1991343764 cites W2023480960 @default.
- W1991343764 cites W2023720317 @default.
- W1991343764 cites W2026208328 @default.
- W1991343764 cites W2033904036 @default.
- W1991343764 cites W2043861370 @default.
- W1991343764 cites W2048511635 @default.
- W1991343764 cites W2049271587 @default.
- W1991343764 cites W2049513758 @default.
- W1991343764 cites W2052069830 @default.
- W1991343764 cites W2055001094 @default.
- W1991343764 cites W2058998445 @default.
- W1991343764 cites W2059635502 @default.
- W1991343764 cites W2063613693 @default.
- W1991343764 cites W2068853101 @default.
- W1991343764 cites W2069023251 @default.
- W1991343764 cites W2071401838 @default.
- W1991343764 cites W2076474993 @default.
- W1991343764 cites W2081368177 @default.
- W1991343764 cites W2083815020 @default.
- W1991343764 cites W2083895740 @default.
- W1991343764 cites W2089552377 @default.
- W1991343764 cites W2091062975 @default.
- W1991343764 cites W2092522163 @default.
- W1991343764 cites W2111690938 @default.
- W1991343764 cites W2114645868 @default.
- W1991343764 cites W2139075761 @default.
- W1991343764 cites W2145709937 @default.
- W1991343764 cites W2147746661 @default.
- W1991343764 cites W2166395752 @default.
- W1991343764 cites W2517147196 @default.
- W1991343764 cites W4229764613 @default.
- W1991343764 doi "https://doi.org/10.2134/jeq2010.0466" @default.
- W1991343764 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22218190" @default.
- W1991343764 hasPublicationYear "2012" @default.
- W1991343764 type Work @default.
- W1991343764 sameAs 1991343764 @default.
- W1991343764 citedByCount "24" @default.
- W1991343764 countsByYear W19913437642012 @default.
- W1991343764 countsByYear W19913437642013 @default.
- W1991343764 countsByYear W19913437642014 @default.
- W1991343764 countsByYear W19913437642015 @default.
- W1991343764 countsByYear W19913437642016 @default.
- W1991343764 countsByYear W19913437642017 @default.
- W1991343764 countsByYear W19913437642018 @default.
- W1991343764 countsByYear W19913437642020 @default.
- W1991343764 countsByYear W19913437642021 @default.
- W1991343764 countsByYear W19913437642022 @default.
- W1991343764 countsByYear W19913437642023 @default.
- W1991343764 crossrefType "journal-article" @default.
- W1991343764 hasAuthorship W1991343764A5005763595 @default.
- W1991343764 hasAuthorship W1991343764A5012027800 @default.
- W1991343764 hasAuthorship W1991343764A5027511226 @default.
- W1991343764 hasAuthorship W1991343764A5044266914 @default.
- W1991343764 hasConcept C127313418 @default.
- W1991343764 hasConcept C142796444 @default.
- W1991343764 hasConcept C159390177 @default.
- W1991343764 hasConcept C159750122 @default.
- W1991343764 hasConcept C178790620 @default.
- W1991343764 hasConcept C185592680 @default.
- W1991343764 hasConcept C187320778 @default.
- W1991343764 hasConcept C18903297 @default.
- W1991343764 hasConcept C2776384668 @default.
- W1991343764 hasConcept C2780560099 @default.
- W1991343764 hasConcept C2780797713 @default.
- W1991343764 hasConcept C39432304 @default.
- W1991343764 hasConcept C537208039 @default.
- W1991343764 hasConcept C6557445 @default.
- W1991343764 hasConcept C67592535 @default.
- W1991343764 hasConcept C76886044 @default.
- W1991343764 hasConcept C86803240 @default.
- W1991343764 hasConceptScore W1991343764C127313418 @default.
- W1991343764 hasConceptScore W1991343764C142796444 @default.
- W1991343764 hasConceptScore W1991343764C159390177 @default.
- W1991343764 hasConceptScore W1991343764C159750122 @default.
- W1991343764 hasConceptScore W1991343764C178790620 @default.