Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991497382> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1991497382 endingPage "280" @default.
- W1991497382 startingPage "271" @default.
- W1991497382 abstract "Four PCA algorithms, namely NIPALS, the power method (POWER), singular value decomposition (SVD) and eigenvalue decomposition (EVD), and their kernel versions are systematically applied to three NIR data sets from the pharmaceutical industry. Cross-validation is used to determine the number of PC factors needed as the input for linear discriminant analysis (LDA). LDA with PCA as the dimension reduction method successfully classifies all three data sets. The kernel algorithms are faster than their corresponding classic algorithms. Of the four classic algorithms, SVD is the fastest. When only the first few PCs are desired, the kernel-POWER method is the fastest of all the algorithms. When all PCs are required, EVD is the most efficient of the four kernel algorithms. When cross-validation is applied, kernel-EVD greatly reduces the elapsed time compared to the classic algorithms. To further speed up cross-validation, two matrix updating methods are proposed. Compared to the normal cross-validation procedure, the first method slightly improves the speed of cross-validation by using the normal kernel-EVD. The second method greatly speeds up cross-validation, but needs a modified kernel-EVD algorithm." @default.
- W1991497382 created "2016-06-24" @default.
- W1991497382 creator A5006162215 @default.
- W1991497382 creator A5006211659 @default.
- W1991497382 creator A5079268196 @default.
- W1991497382 date "1997-06-01" @default.
- W1991497382 modified "2023-10-12" @default.
- W1991497382 title "Kernel-PCA algorithms for wide data Part II: Fast cross-validation and application in classification of NIR data" @default.
- W1991497382 cites W1990990148 @default.
- W1991497382 cites W2016090370 @default.
- W1991497382 cites W2022492778 @default.
- W1991497382 cites W2029932006 @default.
- W1991497382 cites W2037772955 @default.
- W1991497382 cites W2061508190 @default.
- W1991497382 cites W2113454941 @default.
- W1991497382 cites W4238240379 @default.
- W1991497382 cites W4244413581 @default.
- W1991497382 cites W4256511286 @default.
- W1991497382 doi "https://doi.org/10.1016/s0169-7439(97)00027-0" @default.
- W1991497382 hasPublicationYear "1997" @default.
- W1991497382 type Work @default.
- W1991497382 sameAs 1991497382 @default.
- W1991497382 citedByCount "55" @default.
- W1991497382 countsByYear W19914973822012 @default.
- W1991497382 countsByYear W19914973822013 @default.
- W1991497382 countsByYear W19914973822014 @default.
- W1991497382 countsByYear W19914973822015 @default.
- W1991497382 countsByYear W19914973822016 @default.
- W1991497382 countsByYear W19914973822017 @default.
- W1991497382 countsByYear W19914973822018 @default.
- W1991497382 countsByYear W19914973822020 @default.
- W1991497382 crossrefType "journal-article" @default.
- W1991497382 hasAuthorship W1991497382A5006162215 @default.
- W1991497382 hasAuthorship W1991497382A5006211659 @default.
- W1991497382 hasAuthorship W1991497382A5079268196 @default.
- W1991497382 hasConcept C11413529 @default.
- W1991497382 hasConcept C114614502 @default.
- W1991497382 hasConcept C122280245 @default.
- W1991497382 hasConcept C12267149 @default.
- W1991497382 hasConcept C154945302 @default.
- W1991497382 hasConcept C181367576 @default.
- W1991497382 hasConcept C182335926 @default.
- W1991497382 hasConcept C202444582 @default.
- W1991497382 hasConcept C22789450 @default.
- W1991497382 hasConcept C27181475 @default.
- W1991497382 hasConcept C33676613 @default.
- W1991497382 hasConcept C33923547 @default.
- W1991497382 hasConcept C41008148 @default.
- W1991497382 hasConcept C74193536 @default.
- W1991497382 hasConceptScore W1991497382C11413529 @default.
- W1991497382 hasConceptScore W1991497382C114614502 @default.
- W1991497382 hasConceptScore W1991497382C122280245 @default.
- W1991497382 hasConceptScore W1991497382C12267149 @default.
- W1991497382 hasConceptScore W1991497382C154945302 @default.
- W1991497382 hasConceptScore W1991497382C181367576 @default.
- W1991497382 hasConceptScore W1991497382C182335926 @default.
- W1991497382 hasConceptScore W1991497382C202444582 @default.
- W1991497382 hasConceptScore W1991497382C22789450 @default.
- W1991497382 hasConceptScore W1991497382C27181475 @default.
- W1991497382 hasConceptScore W1991497382C33676613 @default.
- W1991497382 hasConceptScore W1991497382C33923547 @default.
- W1991497382 hasConceptScore W1991497382C41008148 @default.
- W1991497382 hasConceptScore W1991497382C74193536 @default.
- W1991497382 hasIssue "2" @default.
- W1991497382 hasLocation W19914973821 @default.
- W1991497382 hasOpenAccess W1991497382 @default.
- W1991497382 hasPrimaryLocation W19914973821 @default.
- W1991497382 hasRelatedWork W1607829095 @default.
- W1991497382 hasRelatedWork W1967057085 @default.
- W1991497382 hasRelatedWork W1980862902 @default.
- W1991497382 hasRelatedWork W1982817239 @default.
- W1991497382 hasRelatedWork W2046363782 @default.
- W1991497382 hasRelatedWork W2048352225 @default.
- W1991497382 hasRelatedWork W2375053148 @default.
- W1991497382 hasRelatedWork W2905418897 @default.
- W1991497382 hasRelatedWork W3033319502 @default.
- W1991497382 hasRelatedWork W3093470103 @default.
- W1991497382 hasVolume "37" @default.
- W1991497382 isParatext "false" @default.
- W1991497382 isRetracted "false" @default.
- W1991497382 magId "1991497382" @default.
- W1991497382 workType "article" @default.