Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991521938> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W1991521938 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2012Novel hybrid ANN autopicker for hydrofrac data: A comparative studyAuthors: Debotyam MaityFred AminzadehMartin KarrenbachDebotyam MaityDepartment of Petroleum Engineering, University of Southern CaliforniaSearch for more papers by this author, Fred AminzadehDepartment of Petroleum Engineering, University of Southern CaliforniaSearch for more papers by this author, and Martin KarrenbachSR2020 Inc.Search for more papers by this authorhttps://doi.org/10.1190/segam2012-0805.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract A wide variety of autopicking algorithms have been developed and are being used to detect phase arrivals from microseismic data. All of the available methods are effective in high SNR (signal-to-noise ratio) environments. However, with the reduction in SNR, there is always a possibility of the arrivals not being detected and classified by standard methods. Different autopicking workflows in use within the academia and the industry show different degrees of performance drop under different scenarios. This is particularly the case in very noisy environments associated with most hydrofrac projects. The quality of the first arrival detection is related to the near- and sub- surface structure, source type, and prevalent SNR conditions. Any of the available autopicking methods could be applicable in some specific scenarios and may fail in others based on the acquisition conditions. Therefore, finding a robust method to work under most circumstances is a major challenge. Moreover, due to large volumes of seismic data common in acquisitions involving passive seismic arrays and the complexity of the autopicking approach in use, the detection of the arrivals can be time consuming. Since detection of the first arrival in a fast and accurate fashion is the key step for additional processing, the aim is to work with data that is characterized by low SNR and poor overall data quality to develop an effective workflow to obtain P-wave and S-wave first arrivals with high accuracy by using combination of attributes in an ANN (artificial neural networks) framework. In this paper, we provide a comparative analysis of the efficacy of different picking algorithms on a synthetic dataset. We benchmark our novel ANN based autopicker with two contemporary autopicking algorithms and validate its applicability for the test case. Permalink: https://doi.org/10.1190/segam2012-0805.1FiguresReferencesRelatedDetails SEG Technical Program Expanded Abstracts 2012ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2012 Pages: 4609 Publisher:Society of Exploration Geophysicists HistoryPublished: 25 Oct 2012 CITATION INFORMATION Debotyam Maity, Fred Aminzadeh, and Martin Karrenbach, (2012), Novel hybrid ANN autopicker for hydrofrac data: A comparative study, SEG Technical Program Expanded Abstracts : 1-5. https://doi.org/10.1190/segam2012-0805.1 Plain-Language Summary PDF DownloadLoading ..." @default.
- W1991521938 created "2016-06-24" @default.
- W1991521938 creator A5026415278 @default.
- W1991521938 creator A5051376996 @default.
- W1991521938 creator A5051597859 @default.
- W1991521938 date "2012-09-01" @default.
- W1991521938 modified "2023-10-16" @default.
- W1991521938 title "Novel hybrid ANN autopicker for hydrofrac data: A comparative study" @default.
- W1991521938 cites W2014539911 @default.
- W1991521938 cites W2025583962 @default.
- W1991521938 cites W2081226342 @default.
- W1991521938 cites W2123197686 @default.
- W1991521938 cites W2125185451 @default.
- W1991521938 cites W2125471009 @default.
- W1991521938 cites W2166423844 @default.
- W1991521938 doi "https://doi.org/10.1190/segam2012-0805.1" @default.
- W1991521938 hasPublicationYear "2012" @default.
- W1991521938 type Work @default.
- W1991521938 sameAs 1991521938 @default.
- W1991521938 citedByCount "0" @default.
- W1991521938 crossrefType "proceedings-article" @default.
- W1991521938 hasAuthorship W1991521938A5026415278 @default.
- W1991521938 hasAuthorship W1991521938A5051376996 @default.
- W1991521938 hasAuthorship W1991521938A5051597859 @default.
- W1991521938 hasConcept C124101348 @default.
- W1991521938 hasConcept C127313418 @default.
- W1991521938 hasConcept C13944312 @default.
- W1991521938 hasConcept C165205528 @default.
- W1991521938 hasConcept C177212765 @default.
- W1991521938 hasConcept C41008148 @default.
- W1991521938 hasConcept C7266685 @default.
- W1991521938 hasConcept C76155785 @default.
- W1991521938 hasConcept C77088390 @default.
- W1991521938 hasConceptScore W1991521938C124101348 @default.
- W1991521938 hasConceptScore W1991521938C127313418 @default.
- W1991521938 hasConceptScore W1991521938C13944312 @default.
- W1991521938 hasConceptScore W1991521938C165205528 @default.
- W1991521938 hasConceptScore W1991521938C177212765 @default.
- W1991521938 hasConceptScore W1991521938C41008148 @default.
- W1991521938 hasConceptScore W1991521938C7266685 @default.
- W1991521938 hasConceptScore W1991521938C76155785 @default.
- W1991521938 hasConceptScore W1991521938C77088390 @default.
- W1991521938 hasLocation W19915219381 @default.
- W1991521938 hasOpenAccess W1991521938 @default.
- W1991521938 hasPrimaryLocation W19915219381 @default.
- W1991521938 hasRelatedWork W1544898319 @default.
- W1991521938 hasRelatedWork W1972443906 @default.
- W1991521938 hasRelatedWork W2081035100 @default.
- W1991521938 hasRelatedWork W2223334459 @default.
- W1991521938 hasRelatedWork W2384869196 @default.
- W1991521938 hasRelatedWork W2497175360 @default.
- W1991521938 hasRelatedWork W2506306745 @default.
- W1991521938 hasRelatedWork W2964552794 @default.
- W1991521938 hasRelatedWork W3118799476 @default.
- W1991521938 hasRelatedWork W3206324740 @default.
- W1991521938 isParatext "false" @default.
- W1991521938 isRetracted "false" @default.
- W1991521938 magId "1991521938" @default.
- W1991521938 workType "article" @default.