Matches in SemOpenAlex for { <https://semopenalex.org/work/W199156503> ?p ?o ?g. }
- W199156503 endingPage "608" @default.
- W199156503 startingPage "599" @default.
- W199156503 abstract "Low-dimensional embedding, manifold learning, clustering, classification, and anomaly detection are among the most important problems in machine learning. The existing methods usually consider the case when each instance has a fixed, finite-dimensional feature representation. Here we consider a different setting. We assume that each instance corresponds to a continuous probability distribution. These distributions are unknown, but we are given some i.i.d. samples from each distribution. Our goal is to estimate the distances between these distributions and use these distances to perform low-dimensional embedding, clustering/classification, or anomaly detection for the distributions. We present estimation algorithms, describe how to apply them for machine learning tasks on distributions, and show empirical results on synthetic data, real word images, and astronomical data sets." @default.
- W199156503 created "2016-06-24" @default.
- W199156503 creator A5013695358 @default.
- W199156503 creator A5055199976 @default.
- W199156503 creator A5066703386 @default.
- W199156503 date "2011-07-14" @default.
- W199156503 modified "2023-10-09" @default.
- W199156503 title "Nonparametric divergence estimation with applications to machine learning on distributions" @default.
- W199156503 cites W121168560 @default.
- W199156503 cites W1246381107 @default.
- W199156503 cites W1589362500 @default.
- W199156503 cites W1612003148 @default.
- W199156503 cites W1839657926 @default.
- W199156503 cites W1911006995 @default.
- W199156503 cites W1973469438 @default.
- W199156503 cites W1981050900 @default.
- W199156503 cites W2001141328 @default.
- W199156503 cites W2017823450 @default.
- W199156503 cites W2050913223 @default.
- W199156503 cites W2053186076 @default.
- W199156503 cites W2060677448 @default.
- W199156503 cites W2067752346 @default.
- W199156503 cites W2077776048 @default.
- W199156503 cites W2095324495 @default.
- W199156503 cites W2097308346 @default.
- W199156503 cites W2107034620 @default.
- W199156503 cites W2122646361 @default.
- W199156503 cites W2122882636 @default.
- W199156503 cites W2139958836 @default.
- W199156503 cites W2150879893 @default.
- W199156503 cites W2151103935 @default.
- W199156503 cites W2152322845 @default.
- W199156503 cites W2156838815 @default.
- W199156503 cites W2157510479 @default.
- W199156503 cites W2158489656 @default.
- W199156503 cites W2161981835 @default.
- W199156503 cites W2166944917 @default.
- W199156503 cites W2170743809 @default.
- W199156503 cites W2404400936 @default.
- W199156503 cites W2951637626 @default.
- W199156503 cites W89191576 @default.
- W199156503 hasPublicationYear "2011" @default.
- W199156503 type Work @default.
- W199156503 sameAs 199156503 @default.
- W199156503 citedByCount "49" @default.
- W199156503 countsByYear W1991565032012 @default.
- W199156503 countsByYear W1991565032013 @default.
- W199156503 countsByYear W1991565032014 @default.
- W199156503 countsByYear W1991565032015 @default.
- W199156503 countsByYear W1991565032016 @default.
- W199156503 countsByYear W1991565032017 @default.
- W199156503 countsByYear W1991565032018 @default.
- W199156503 countsByYear W1991565032019 @default.
- W199156503 countsByYear W1991565032020 @default.
- W199156503 countsByYear W1991565032021 @default.
- W199156503 crossrefType "proceedings-article" @default.
- W199156503 hasAuthorship W199156503A5013695358 @default.
- W199156503 hasAuthorship W199156503A5055199976 @default.
- W199156503 hasAuthorship W199156503A5066703386 @default.
- W199156503 hasConcept C102366305 @default.
- W199156503 hasConcept C105795698 @default.
- W199156503 hasConcept C110121322 @default.
- W199156503 hasConcept C11413529 @default.
- W199156503 hasConcept C119857082 @default.
- W199156503 hasConcept C134306372 @default.
- W199156503 hasConcept C138885662 @default.
- W199156503 hasConcept C149441793 @default.
- W199156503 hasConcept C151876577 @default.
- W199156503 hasConcept C153180895 @default.
- W199156503 hasConcept C154945302 @default.
- W199156503 hasConcept C17744445 @default.
- W199156503 hasConcept C199539241 @default.
- W199156503 hasConcept C207390915 @default.
- W199156503 hasConcept C2776359362 @default.
- W199156503 hasConcept C2776401178 @default.
- W199156503 hasConcept C33923547 @default.
- W199156503 hasConcept C41008148 @default.
- W199156503 hasConcept C41608201 @default.
- W199156503 hasConcept C41895202 @default.
- W199156503 hasConcept C70518039 @default.
- W199156503 hasConcept C73555534 @default.
- W199156503 hasConcept C739882 @default.
- W199156503 hasConcept C8038995 @default.
- W199156503 hasConcept C94625758 @default.
- W199156503 hasConceptScore W199156503C102366305 @default.
- W199156503 hasConceptScore W199156503C105795698 @default.
- W199156503 hasConceptScore W199156503C110121322 @default.
- W199156503 hasConceptScore W199156503C11413529 @default.
- W199156503 hasConceptScore W199156503C119857082 @default.
- W199156503 hasConceptScore W199156503C134306372 @default.
- W199156503 hasConceptScore W199156503C138885662 @default.
- W199156503 hasConceptScore W199156503C149441793 @default.
- W199156503 hasConceptScore W199156503C151876577 @default.
- W199156503 hasConceptScore W199156503C153180895 @default.
- W199156503 hasConceptScore W199156503C154945302 @default.
- W199156503 hasConceptScore W199156503C17744445 @default.
- W199156503 hasConceptScore W199156503C199539241 @default.
- W199156503 hasConceptScore W199156503C207390915 @default.