Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991566301> ?p ?o ?g. }
- W1991566301 endingPage "308" @default.
- W1991566301 startingPage "255" @default.
- W1991566301 abstract "An important feature of modern science and engineering is that data of various kinds is being produced at an unprecedented rate. This is so in part because of new experimental methods, and in part because of the increase in the availability of high powered computing technology. It is also clear that the nature of the data we are obtaining is significantly different. For example, it is now often the case that we are given data in the form of very long vectors, where all but a few of the coordinates turn out to be irrelevant to the questions of interest, and further that we don’t necessarily know which coordinates are the interesting ones. A related fact is that the data is often very high-dimensional, which severely restricts our ability to visualize it. The data obtained is also often much noisier than in the past and has more missing information (missing data). This is particularly so in the case of biological data, particularly high throughput data from microarray or other sources. Our ability to analyze this data, both in terms of quantity and the nature of the data, is clearly not keeping pace with the data being produced. In this paper, we will discuss how geometry and topology can be applied to make useful contributions to the analysis of various kinds of data. Geometry and topology are very natural tools to apply in this direction, since geometry can be regarded as the study of distance functions, and what one often works with are distance functions on large finite sets of data. The mathematical formalism which has been developed for incorporating geometric and topological techniques deals with point clouds, i.e. finite sets of points equipped with a distance function. It then adapts tools from the various branches of geometry to the study of point clouds. The point clouds are intended to be thought of as finite samples taken from a geometric object, perhaps with noise. Here are some of the key points which come up when applying these geometric methods to data analysis. • Qualitative information is needed: One important goal of data analysis is to allow the user to obtain knowledge about the data, i.e. to understand how it is organized on a large scale. For example, if we imagine that we are looking at a data set constructed somehow from diabetes patients, it would be important to develop the understanding that there are two types of the disease, namely the juvenile and adult onset forms. Once that is established, one of course wants to develop quantitative methods for distinguishing them, but the first insight about the distinct forms of the disease is key." @default.
- W1991566301 created "2016-06-24" @default.
- W1991566301 creator A5055887774 @default.
- W1991566301 date "2009-01-29" @default.
- W1991566301 modified "2023-10-14" @default.
- W1991566301 title "Topology and data" @default.
- W1991566301 cites W1480376833 @default.
- W1991566301 cites W1483218536 @default.
- W1991566301 cites W1484273426 @default.
- W1991566301 cites W1486210143 @default.
- W1991566301 cites W1495929194 @default.
- W1991566301 cites W1530632394 @default.
- W1991566301 cites W1537258143 @default.
- W1991566301 cites W1570973162 @default.
- W1991566301 cites W1913389890 @default.
- W1991566301 cites W1941645695 @default.
- W1991566301 cites W1971238472 @default.
- W1991566301 cites W1973770352 @default.
- W1991566301 cites W1974603499 @default.
- W1991566301 cites W1989269080 @default.
- W1991566301 cites W1994917529 @default.
- W1991566301 cites W2001141328 @default.
- W1991566301 cites W2002276939 @default.
- W1991566301 cites W2035793643 @default.
- W1991566301 cites W2037613900 @default.
- W1991566301 cites W2049954094 @default.
- W1991566301 cites W2052197092 @default.
- W1991566301 cites W2053186076 @default.
- W1991566301 cites W2087841994 @default.
- W1991566301 cites W2101933716 @default.
- W1991566301 cites W2104339857 @default.
- W1991566301 cites W2105165055 @default.
- W1991566301 cites W2110369778 @default.
- W1991566301 cites W2111004121 @default.
- W1991566301 cites W2117897510 @default.
- W1991566301 cites W2120023453 @default.
- W1991566301 cites W2120506491 @default.
- W1991566301 cites W2120713972 @default.
- W1991566301 cites W2122778257 @default.
- W1991566301 cites W2126439213 @default.
- W1991566301 cites W2129905273 @default.
- W1991566301 cites W2144044408 @default.
- W1991566301 cites W2153986241 @default.
- W1991566301 cites W2155161883 @default.
- W1991566301 cites W2157878484 @default.
- W1991566301 cites W2164928285 @default.
- W1991566301 cites W2313888632 @default.
- W1991566301 cites W2735413403 @default.
- W1991566301 cites W2911463656 @default.
- W1991566301 cites W2912929541 @default.
- W1991566301 cites W2913066018 @default.
- W1991566301 cites W3013843370 @default.
- W1991566301 cites W3040586665 @default.
- W1991566301 cites W630423399 @default.
- W1991566301 cites W71815502 @default.
- W1991566301 doi "https://doi.org/10.1090/s0273-0979-09-01249-x" @default.
- W1991566301 hasPublicationYear "2009" @default.
- W1991566301 type Work @default.
- W1991566301 sameAs 1991566301 @default.
- W1991566301 citedByCount "1782" @default.
- W1991566301 countsByYear W19915663012012 @default.
- W1991566301 countsByYear W19915663012013 @default.
- W1991566301 countsByYear W19915663012014 @default.
- W1991566301 countsByYear W19915663012015 @default.
- W1991566301 countsByYear W19915663012016 @default.
- W1991566301 countsByYear W19915663012017 @default.
- W1991566301 countsByYear W19915663012018 @default.
- W1991566301 countsByYear W19915663012019 @default.
- W1991566301 countsByYear W19915663012020 @default.
- W1991566301 countsByYear W19915663012021 @default.
- W1991566301 countsByYear W19915663012022 @default.
- W1991566301 countsByYear W19915663012023 @default.
- W1991566301 crossrefType "journal-article" @default.
- W1991566301 hasAuthorship W1991566301A5055887774 @default.
- W1991566301 hasBestOaLocation W19915663011 @default.
- W1991566301 hasConcept C114614502 @default.
- W1991566301 hasConcept C184720557 @default.
- W1991566301 hasConcept C33923547 @default.
- W1991566301 hasConcept C41008148 @default.
- W1991566301 hasConceptScore W1991566301C114614502 @default.
- W1991566301 hasConceptScore W1991566301C184720557 @default.
- W1991566301 hasConceptScore W1991566301C33923547 @default.
- W1991566301 hasConceptScore W1991566301C41008148 @default.
- W1991566301 hasIssue "2" @default.
- W1991566301 hasLocation W19915663011 @default.
- W1991566301 hasOpenAccess W1991566301 @default.
- W1991566301 hasPrimaryLocation W19915663011 @default.
- W1991566301 hasRelatedWork W1587224694 @default.
- W1991566301 hasRelatedWork W1979597421 @default.
- W1991566301 hasRelatedWork W2007980826 @default.
- W1991566301 hasRelatedWork W2061531152 @default.
- W1991566301 hasRelatedWork W2077600819 @default.
- W1991566301 hasRelatedWork W2748952813 @default.
- W1991566301 hasRelatedWork W2899084033 @default.
- W1991566301 hasRelatedWork W3002753104 @default.
- W1991566301 hasRelatedWork W4225152035 @default.
- W1991566301 hasRelatedWork W4245490552 @default.
- W1991566301 hasVolume "46" @default.