Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991659969> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1991659969 abstract "The image of a polygonal knot K under a spherical inversion of ℝ 3 ∪ ∞ is a simple closed curve made of arcs of circles, perhaps some line segments, having the same knot type as the mirror image of K. But suppose we reconnect the vertices of the inverted polygon with straight lines, making a new polygon [Formula: see text]. This may be a different knot type. For example, a certain 7-segment figure-eight knot can be transformed to a figure-eight knot, a trefoil, or an unknot, by selecting different inverting spheres. Which knot types can be obtained from a given original polygon K under this process? We show that for large n, most n-segment knot types cannot be reached from one initial n-segment polygon, using a single inversion or even the whole Möbius group. The number of knot types is bounded by the number of complementary domains of a certain system of round 2-spheres in ℝ 3 . We show the number of domains is at most polynomial in the number of spheres, and the number of spheres is itself a polynomial function of the number of edges of the original polygon. In the analysis, we obtain an exact formula for the number of complementary domains of any collection of round 2-spheres in ℝ 3 . On the other hand, the number of knot types that can be represented by n-segment polygons is exponential in n. Our construction can be interpreted as a particular instance of building polygonal knots in non-Euclidean metrics. In particular, start with a list of n vertices in ℝ 3 and connect them with arcs of circles instead of line segments: Which knots can be obtained? Our polygonal inversion construction is equivalent to picking one fixed point p ∈ ℝ 3 and replacing each edge of K by an arc of the circle determined by p and the endpoints of the edge." @default.
- W1991659969 created "2016-06-24" @default.
- W1991659969 creator A5047958584 @default.
- W1991659969 creator A5062935341 @default.
- W1991659969 creator A5083119954 @default.
- W1991659969 date "2008-11-01" @default.
- W1991659969 modified "2023-10-18" @default.
- W1991659969 title "MÖBIUS TRANSFORMATIONS OF POLYGONS AND PARTITIONS OF 3-SPACE" @default.
- W1991659969 cites W1964175134 @default.
- W1991659969 cites W2013530637 @default.
- W1991659969 cites W2038099638 @default.
- W1991659969 cites W2067161045 @default.
- W1991659969 cites W2158513013 @default.
- W1991659969 cites W2597608666 @default.
- W1991659969 cites W827782930 @default.
- W1991659969 doi "https://doi.org/10.1142/s0218216508006671" @default.
- W1991659969 hasPublicationYear "2008" @default.
- W1991659969 type Work @default.
- W1991659969 sameAs 1991659969 @default.
- W1991659969 citedByCount "2" @default.
- W1991659969 countsByYear W19916599692018 @default.
- W1991659969 countsByYear W19916599692020 @default.
- W1991659969 crossrefType "journal-article" @default.
- W1991659969 hasAuthorship W1991659969A5047958584 @default.
- W1991659969 hasAuthorship W1991659969A5062935341 @default.
- W1991659969 hasAuthorship W1991659969A5083119954 @default.
- W1991659969 hasBestOaLocation W19916599692 @default.
- W1991659969 hasConcept C114614502 @default.
- W1991659969 hasConcept C126042441 @default.
- W1991659969 hasConcept C127413603 @default.
- W1991659969 hasConcept C143330242 @default.
- W1991659969 hasConcept C190694206 @default.
- W1991659969 hasConcept C2524010 @default.
- W1991659969 hasConcept C2779863119 @default.
- W1991659969 hasConcept C2780286412 @default.
- W1991659969 hasConcept C33923547 @default.
- W1991659969 hasConcept C36794415 @default.
- W1991659969 hasConcept C41008148 @default.
- W1991659969 hasConcept C42360764 @default.
- W1991659969 hasConcept C76155785 @default.
- W1991659969 hasConceptScore W1991659969C114614502 @default.
- W1991659969 hasConceptScore W1991659969C126042441 @default.
- W1991659969 hasConceptScore W1991659969C127413603 @default.
- W1991659969 hasConceptScore W1991659969C143330242 @default.
- W1991659969 hasConceptScore W1991659969C190694206 @default.
- W1991659969 hasConceptScore W1991659969C2524010 @default.
- W1991659969 hasConceptScore W1991659969C2779863119 @default.
- W1991659969 hasConceptScore W1991659969C2780286412 @default.
- W1991659969 hasConceptScore W1991659969C33923547 @default.
- W1991659969 hasConceptScore W1991659969C36794415 @default.
- W1991659969 hasConceptScore W1991659969C41008148 @default.
- W1991659969 hasConceptScore W1991659969C42360764 @default.
- W1991659969 hasConceptScore W1991659969C76155785 @default.
- W1991659969 hasLocation W19916599691 @default.
- W1991659969 hasLocation W19916599692 @default.
- W1991659969 hasLocation W19916599693 @default.
- W1991659969 hasOpenAccess W1991659969 @default.
- W1991659969 hasPrimaryLocation W19916599691 @default.
- W1991659969 hasRelatedWork W1519232154 @default.
- W1991659969 hasRelatedWork W1982408165 @default.
- W1991659969 hasRelatedWork W2002996714 @default.
- W1991659969 hasRelatedWork W2020550704 @default.
- W1991659969 hasRelatedWork W2061661821 @default.
- W1991659969 hasRelatedWork W2072118844 @default.
- W1991659969 hasRelatedWork W2096664629 @default.
- W1991659969 hasRelatedWork W2101501927 @default.
- W1991659969 hasRelatedWork W2111465243 @default.
- W1991659969 hasRelatedWork W2125610797 @default.
- W1991659969 hasRelatedWork W2145686222 @default.
- W1991659969 hasRelatedWork W2740243938 @default.
- W1991659969 hasRelatedWork W2772522232 @default.
- W1991659969 hasRelatedWork W2843319033 @default.
- W1991659969 hasRelatedWork W2951517519 @default.
- W1991659969 hasRelatedWork W2951740829 @default.
- W1991659969 hasRelatedWork W2952746235 @default.
- W1991659969 hasRelatedWork W2975304247 @default.
- W1991659969 hasRelatedWork W3101770330 @default.
- W1991659969 hasRelatedWork W3193685021 @default.
- W1991659969 isParatext "false" @default.
- W1991659969 isRetracted "false" @default.
- W1991659969 magId "1991659969" @default.
- W1991659969 workType "article" @default.