Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991668032> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1991668032 abstract "Classification tools including Support Vector Machines (SVM) and Neural Networks (NN) are employed, and their performances compared for Unexploded Ordnance (UXO) classification using live site electromagnetic induction (EMI) data. Both SVM and NN are examples of supervised machine-learning techniques, whose purpose is to label the features (extracted from the incoming data of the unknown subsurface anomalies) based on previously trained examples. In this paper a set of three features are extracted from the EMI decay curves of the physics-based intrinsic, effective dipole moment, called the total Normalized Surface Magnetic Source (NSMS). This data is first used to train both the SVM and NN models and further serves as a basis for UXO classification. These techniques are then compared to an unsupervised learning approach, based on agglomerative hierarchical clustering followed by Gaussian Mixture modeling. We found that such combination provides reduction in the amount of required training data (which is being requested solely based on the clustering results) and allows for convenient probabilistic interpretation of the classification. The classification results themselves depend on the UXO caliber, material composition and actual live UXO site's conditions. Therefore, here we report the classification results for a live UXO data set, collected at former Camp San Luis Obispo, CA. This study includes four targets-of-interest: 60-mm, 81-mm, and 4.2-in mortars and 2.36-in rockets. The classification performance between clutters and UXO is studied and the corresponding ROC curves are illustrated." @default.
- W1991668032 created "2016-06-24" @default.
- W1991668032 creator A5039995184 @default.
- W1991668032 creator A5049793480 @default.
- W1991668032 creator A5051918495 @default.
- W1991668032 creator A5069309413 @default.
- W1991668032 creator A5069743713 @default.
- W1991668032 creator A5087917111 @default.
- W1991668032 date "2011-05-13" @default.
- W1991668032 modified "2023-09-23" @default.
- W1991668032 title "Comparison of supervised and unsupervised machine learning techniques for UXO classification using EMI data" @default.
- W1991668032 cites W1498436455 @default.
- W1991668032 cites W1540596182 @default.
- W1991668032 cites W2107093743 @default.
- W1991668032 cites W2153635508 @default.
- W1991668032 doi "https://doi.org/10.1117/12.884076" @default.
- W1991668032 hasPublicationYear "2011" @default.
- W1991668032 type Work @default.
- W1991668032 sameAs 1991668032 @default.
- W1991668032 citedByCount "3" @default.
- W1991668032 countsByYear W19916680322013 @default.
- W1991668032 countsByYear W19916680322014 @default.
- W1991668032 countsByYear W19916680322023 @default.
- W1991668032 crossrefType "proceedings-article" @default.
- W1991668032 hasAuthorship W1991668032A5039995184 @default.
- W1991668032 hasAuthorship W1991668032A5049793480 @default.
- W1991668032 hasAuthorship W1991668032A5051918495 @default.
- W1991668032 hasAuthorship W1991668032A5069309413 @default.
- W1991668032 hasAuthorship W1991668032A5069743713 @default.
- W1991668032 hasAuthorship W1991668032A5087917111 @default.
- W1991668032 hasConcept C110083411 @default.
- W1991668032 hasConcept C119857082 @default.
- W1991668032 hasConcept C12267149 @default.
- W1991668032 hasConcept C136389625 @default.
- W1991668032 hasConcept C153180895 @default.
- W1991668032 hasConcept C154945302 @default.
- W1991668032 hasConcept C177264268 @default.
- W1991668032 hasConcept C184892835 @default.
- W1991668032 hasConcept C199360897 @default.
- W1991668032 hasConcept C205649164 @default.
- W1991668032 hasConcept C2775977338 @default.
- W1991668032 hasConcept C41008148 @default.
- W1991668032 hasConcept C43461449 @default.
- W1991668032 hasConcept C50644808 @default.
- W1991668032 hasConcept C58489278 @default.
- W1991668032 hasConcept C62649853 @default.
- W1991668032 hasConcept C73555534 @default.
- W1991668032 hasConcept C76155785 @default.
- W1991668032 hasConceptScore W1991668032C110083411 @default.
- W1991668032 hasConceptScore W1991668032C119857082 @default.
- W1991668032 hasConceptScore W1991668032C12267149 @default.
- W1991668032 hasConceptScore W1991668032C136389625 @default.
- W1991668032 hasConceptScore W1991668032C153180895 @default.
- W1991668032 hasConceptScore W1991668032C154945302 @default.
- W1991668032 hasConceptScore W1991668032C177264268 @default.
- W1991668032 hasConceptScore W1991668032C184892835 @default.
- W1991668032 hasConceptScore W1991668032C199360897 @default.
- W1991668032 hasConceptScore W1991668032C205649164 @default.
- W1991668032 hasConceptScore W1991668032C2775977338 @default.
- W1991668032 hasConceptScore W1991668032C41008148 @default.
- W1991668032 hasConceptScore W1991668032C43461449 @default.
- W1991668032 hasConceptScore W1991668032C50644808 @default.
- W1991668032 hasConceptScore W1991668032C58489278 @default.
- W1991668032 hasConceptScore W1991668032C62649853 @default.
- W1991668032 hasConceptScore W1991668032C73555534 @default.
- W1991668032 hasConceptScore W1991668032C76155785 @default.
- W1991668032 hasLocation W19916680321 @default.
- W1991668032 hasOpenAccess W1991668032 @default.
- W1991668032 hasPrimaryLocation W19916680321 @default.
- W1991668032 hasRelatedWork W2041399278 @default.
- W1991668032 hasRelatedWork W2056016498 @default.
- W1991668032 hasRelatedWork W2136184105 @default.
- W1991668032 hasRelatedWork W2160451891 @default.
- W1991668032 hasRelatedWork W2336974148 @default.
- W1991668032 hasRelatedWork W2937631562 @default.
- W1991668032 hasRelatedWork W3174451172 @default.
- W1991668032 hasRelatedWork W3213308033 @default.
- W1991668032 hasRelatedWork W2187500075 @default.
- W1991668032 hasRelatedWork W2345184372 @default.
- W1991668032 isParatext "false" @default.
- W1991668032 isRetracted "false" @default.
- W1991668032 magId "1991668032" @default.
- W1991668032 workType "article" @default.