Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991710050> ?p ?o ?g. }
- W1991710050 endingPage "474" @default.
- W1991710050 startingPage "465" @default.
- W1991710050 abstract "The US EPA BEACH Act requires beach managers to issue swimming advisories when water quality standards are exceeded. While a number of methods/models have been proposed to meet the BEACH Act requirement, no systematic comparisons of different methods against the same data series are available in terms of relative performance of existing methods. This study presents and compares three models for nowcasting and forecasting enterococci levels at Gulf Coast beaches in Louisiana, USA. One was developed using the artificial neural network (ANN) in MATLAB Toolbox and the other two were based on the US EPA Virtual Beach (VB) Program. A total of 944 sets of environmental and bacteriological data were utilized. The data were collected and analyzed weekly during the swimming season (May–October) at six sites of the Holly Beach by Louisiana Beach Monitoring Program in the six year period of May 2005–October 2010. The ANN model includes 15 readily available environmental variables such as salinity, water temperature, wind speed and direction, tide level and type, weather type, and various combinations of antecedent rainfalls. The ANN model was trained, validated, and tested using 308, 103, and 103 data sets (collected in 2007, 2008, and 2009) with an average linear correlation coefficient (LCC) of 0.857 and a Root Mean Square Error (RMSE) of 0.336. The two VB models, including a linear transformation-based model and a nonlinear transformation-based model, were constructed using the same data sets. The linear VB model with 6 input variables achieved an LCC of 0.230 and an RMSE of 1.302 while the nonlinear VB model with 5 input variables produced an LCC of 0.337 and an RMSE of 1.205. In order to assess the predictive performance of the ANN and VB models, hindcasting was conducted using a total of 430 sets of independent environmental and bacteriological data collected at six Holly Beach sites in 2005, 2006, and 2010. The hindcasting results show that the ANN model is capable of predicting enterococci levels at the Holly Beach sites with an adjusted RMSE of 0.803 and LCC of 0.320 while the adjusted RMSE and LCC values are 1.815 and 0.354 for the linear VB model and 1.961and 0.521 for the nonlinear VB model. The results indicate that the ANN model with 15 parameters performs better than the VB models with 6 or 5 parameters in terms of RMSE while VB models perform better than the ANN model in terms of LCC. The predictive models (especially the ANN and the nonlinear VB models) developed in this study in combination with readily available real-time environmental and weather forecast data can be utilized to nowcast and forecast beach water quality, greatly reducing the potential risk of contaminated beach waters to human health and improving beach management. While the models were developed specifically for the Holly Beach, Louisiana, the methods used in this paper are generally applicable to other coastal beaches." @default.
- W1991710050 created "2016-06-24" @default.
- W1991710050 creator A5060229549 @default.
- W1991710050 creator A5077779893 @default.
- W1991710050 creator A5086287153 @default.
- W1991710050 date "2012-02-01" @default.
- W1991710050 modified "2023-09-26" @default.
- W1991710050 title "Development of predictive models for determining enterococci levels at Gulf Coast beaches" @default.
- W1991710050 cites W1525447380 @default.
- W1991710050 cites W1583029997 @default.
- W1991710050 cites W1860270845 @default.
- W1991710050 cites W1969956826 @default.
- W1991710050 cites W1973682608 @default.
- W1991710050 cites W1973986184 @default.
- W1991710050 cites W1974866961 @default.
- W1991710050 cites W1975103620 @default.
- W1991710050 cites W1978059361 @default.
- W1991710050 cites W1978099528 @default.
- W1991710050 cites W1978131178 @default.
- W1991710050 cites W1978510647 @default.
- W1991710050 cites W1980759164 @default.
- W1991710050 cites W1990137406 @default.
- W1991710050 cites W1991155975 @default.
- W1991710050 cites W2019700190 @default.
- W1991710050 cites W2029079097 @default.
- W1991710050 cites W2030634584 @default.
- W1991710050 cites W2034623518 @default.
- W1991710050 cites W2034960629 @default.
- W1991710050 cites W2052714130 @default.
- W1991710050 cites W2057143905 @default.
- W1991710050 cites W2058514036 @default.
- W1991710050 cites W2068687364 @default.
- W1991710050 cites W2073550370 @default.
- W1991710050 cites W2077469027 @default.
- W1991710050 cites W2080530396 @default.
- W1991710050 cites W2085155547 @default.
- W1991710050 cites W2088369156 @default.
- W1991710050 cites W2093238538 @default.
- W1991710050 cites W2093845179 @default.
- W1991710050 cites W2101422212 @default.
- W1991710050 cites W2104477810 @default.
- W1991710050 cites W2106251175 @default.
- W1991710050 cites W2112568877 @default.
- W1991710050 cites W2113711341 @default.
- W1991710050 cites W2120342567 @default.
- W1991710050 cites W2133504247 @default.
- W1991710050 cites W2139690444 @default.
- W1991710050 cites W2145303205 @default.
- W1991710050 cites W2147904324 @default.
- W1991710050 cites W2166513851 @default.
- W1991710050 cites W2300604061 @default.
- W1991710050 cites W2324887028 @default.
- W1991710050 cites W2472471868 @default.
- W1991710050 cites W4231544585 @default.
- W1991710050 cites W4233776698 @default.
- W1991710050 doi "https://doi.org/10.1016/j.watres.2011.11.027" @default.
- W1991710050 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22130001" @default.
- W1991710050 hasPublicationYear "2012" @default.
- W1991710050 type Work @default.
- W1991710050 sameAs 1991710050 @default.
- W1991710050 citedByCount "44" @default.
- W1991710050 countsByYear W19917100502012 @default.
- W1991710050 countsByYear W19917100502013 @default.
- W1991710050 countsByYear W19917100502014 @default.
- W1991710050 countsByYear W19917100502015 @default.
- W1991710050 countsByYear W19917100502016 @default.
- W1991710050 countsByYear W19917100502017 @default.
- W1991710050 countsByYear W19917100502018 @default.
- W1991710050 countsByYear W19917100502019 @default.
- W1991710050 countsByYear W19917100502020 @default.
- W1991710050 countsByYear W19917100502021 @default.
- W1991710050 countsByYear W19917100502022 @default.
- W1991710050 countsByYear W19917100502023 @default.
- W1991710050 crossrefType "journal-article" @default.
- W1991710050 hasAuthorship W1991710050A5060229549 @default.
- W1991710050 hasAuthorship W1991710050A5077779893 @default.
- W1991710050 hasAuthorship W1991710050A5086287153 @default.
- W1991710050 hasConcept C105795698 @default.
- W1991710050 hasConcept C127413603 @default.
- W1991710050 hasConcept C139945424 @default.
- W1991710050 hasConcept C153294291 @default.
- W1991710050 hasConcept C187320778 @default.
- W1991710050 hasConcept C205649164 @default.
- W1991710050 hasConcept C33923547 @default.
- W1991710050 hasConcept C39432304 @default.
- W1991710050 hasConcept C76886044 @default.
- W1991710050 hasConceptScore W1991710050C105795698 @default.
- W1991710050 hasConceptScore W1991710050C127413603 @default.
- W1991710050 hasConceptScore W1991710050C139945424 @default.
- W1991710050 hasConceptScore W1991710050C153294291 @default.
- W1991710050 hasConceptScore W1991710050C187320778 @default.
- W1991710050 hasConceptScore W1991710050C205649164 @default.
- W1991710050 hasConceptScore W1991710050C33923547 @default.
- W1991710050 hasConceptScore W1991710050C39432304 @default.
- W1991710050 hasConceptScore W1991710050C76886044 @default.
- W1991710050 hasIssue "2" @default.
- W1991710050 hasLocation W19917100501 @default.
- W1991710050 hasLocation W19917100502 @default.