Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991725986> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W1991725986 endingPage "11" @default.
- W1991725986 startingPage "1" @default.
- W1991725986 abstract "One of the novel research directions in Natural Language Processing and Machine Learning involves creating and developing methods for automatic discernment of deceptive messages from truthful ones. Mistaking intentionally deceptive pieces of information for authentic ones (true to the writer’s beliefs) can create negative consequences, since our everyday decision-making, actions, and mood are often impacted by information we encounter. Such research is vital today as it aims to develop tools for the automated recognition of deceptive, disingenuous or fake information (the kind intended to create false beliefs or conclusions in the reader’s mind). The ultimate goal is to support truthfulness ratings that signal the trustworthiness of the retrieved information, or alert information seekers to potential deception. To proceed with this agenda, we require elicitation techniques for obtaining samples of both deceptive and truthful messages from study participants in various subject areas. A data collection, or a corpus of truths and lies, should meet certain basic criteria to allow for meaningful analysis and comparison of socio-linguistic behaviors. In this paper we propose solutions and weigh pros and cons of various experimental set-ups in the art of corpus building. The outcomes of three experiments demonstrate certain limitations with using online crowdsourcing for data collection of this type. Incorporating motivation in the task descriptions, and the role of visual context in creating deceptive narratives are other factors that should be addressed in future efforts to build a quality dataset." @default.
- W1991725986 created "2016-06-24" @default.
- W1991725986 creator A5040583544 @default.
- W1991725986 creator A5076425123 @default.
- W1991725986 date "2012-01-01" @default.
- W1991725986 modified "2023-09-23" @default.
- W1991725986 title "The art of creating an informative data collection for automated deception detection: A corpus of truths and lies" @default.
- W1991725986 cites W2006941876 @default.
- W1991725986 cites W2015085755 @default.
- W1991725986 cites W2032279423 @default.
- W1991725986 cites W2035896792 @default.
- W1991725986 cites W2042408352 @default.
- W1991725986 cites W2047772672 @default.
- W1991725986 cites W2054776631 @default.
- W1991725986 cites W2058098804 @default.
- W1991725986 cites W2065290828 @default.
- W1991725986 cites W2074523230 @default.
- W1991725986 cites W2079871912 @default.
- W1991725986 cites W2089594500 @default.
- W1991725986 cites W2091034860 @default.
- W1991725986 cites W2092814538 @default.
- W1991725986 cites W2158947497 @default.
- W1991725986 cites W2163220194 @default.
- W1991725986 cites W2145174828 @default.
- W1991725986 doi "https://doi.org/10.1002/meet.14504901045" @default.
- W1991725986 hasPublicationYear "2012" @default.
- W1991725986 type Work @default.
- W1991725986 sameAs 1991725986 @default.
- W1991725986 citedByCount "1" @default.
- W1991725986 countsByYear W19917259862017 @default.
- W1991725986 crossrefType "journal-article" @default.
- W1991725986 hasAuthorship W1991725986A5040583544 @default.
- W1991725986 hasAuthorship W1991725986A5076425123 @default.
- W1991725986 hasConcept C154945302 @default.
- W1991725986 hasConcept C15744967 @default.
- W1991725986 hasConcept C204321447 @default.
- W1991725986 hasConcept C2522767166 @default.
- W1991725986 hasConcept C2779267917 @default.
- W1991725986 hasConcept C41008148 @default.
- W1991725986 hasConcept C77805123 @default.
- W1991725986 hasConceptScore W1991725986C154945302 @default.
- W1991725986 hasConceptScore W1991725986C15744967 @default.
- W1991725986 hasConceptScore W1991725986C204321447 @default.
- W1991725986 hasConceptScore W1991725986C2522767166 @default.
- W1991725986 hasConceptScore W1991725986C2779267917 @default.
- W1991725986 hasConceptScore W1991725986C41008148 @default.
- W1991725986 hasConceptScore W1991725986C77805123 @default.
- W1991725986 hasIssue "1" @default.
- W1991725986 hasLocation W19917259861 @default.
- W1991725986 hasOpenAccess W1991725986 @default.
- W1991725986 hasPrimaryLocation W19917259861 @default.
- W1991725986 hasRelatedWork W2013819494 @default.
- W1991725986 hasRelatedWork W2036633749 @default.
- W1991725986 hasRelatedWork W2044416304 @default.
- W1991725986 hasRelatedWork W2057770569 @default.
- W1991725986 hasRelatedWork W2115436664 @default.
- W1991725986 hasRelatedWork W2748952813 @default.
- W1991725986 hasRelatedWork W2840929053 @default.
- W1991725986 hasRelatedWork W2886151004 @default.
- W1991725986 hasRelatedWork W2899084033 @default.
- W1991725986 hasRelatedWork W3107474891 @default.
- W1991725986 hasVolume "49" @default.
- W1991725986 isParatext "false" @default.
- W1991725986 isRetracted "false" @default.
- W1991725986 magId "1991725986" @default.
- W1991725986 workType "article" @default.