Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991808150> ?p ?o ?g. }
- W1991808150 endingPage "1868" @default.
- W1991808150 startingPage "1857" @default.
- W1991808150 abstract "Cell behaviours within tissues are influenced by a broad array of physical and biochemical microenvironmental factors. Whilst ‘stiffness’ is a recognised physical property of substrates and tissue microenvironments that influences many cellular behaviours, tissues and their extracellular matrices are not purely rigid but ‘viscoelastic’ materials, composed of both rigid-like (elastic) and dissipative (viscous) elements. This viscoelasticity results in materials displaying increased deformation with time under the imposition of a defined force or stress, a phenomenon referred to as time-dependent deformation or ‘creep’. Previously, we compared the behaviour of human mesenchymal stem cells (hMSCs) on hydrogels tailored to have a constant stiffness, but to display varying levels of creep in response to an applied force. Using polyacrylamide as a model material, we showed that on high-creep hydrogels (HCHs), hMSCs displayed increased proliferation, spread area and differentiation towards multiple lineages, compared to their purely stiff analogue, with a particular propensity for differentiation towards a smooth muscle cell (SMC) lineage. In this present study, we investigate the mechanisms behind this phenomenon and show that hMSCs adhered to HCHs have increased expression of SMC induction factors, including soluble factors, ECM proteins and the cell–cell adhesion molecule, N-Cadherin. Further, we identify a key role for Rac1 signalling in mediating this increased N-Cadherin expression. Using a real-time Rac1-FRET biosensor, we confirm increased Rac1 activation on HCHs, an observation that is further supported functionally by observed increases in motility and lamellipodial protrusion rates of hMSCs. Increased Rac1 activity in hMSCs on HCHs provides underlying mechanisms for enhanced commitment towards a SMC lineage and the compensatory increase in spread area (isotonic tension) after a creep-induced loss of cytoskeletal tension on viscoelastic substrates, in contrast to previous studies that have consistently demonstrated up-regulation of RhoA activity with increasing substrate stiffness. Tuning substrate viscoelasticity to introduce varying levels of creep thus equips the biomaterial scientist or engineer with a new tool with which to tune and direct stem cell outcomes." @default.
- W1991808150 created "2016-06-24" @default.
- W1991808150 creator A5003512608 @default.
- W1991808150 creator A5008963986 @default.
- W1991808150 creator A5020029453 @default.
- W1991808150 creator A5032960507 @default.
- W1991808150 creator A5076063590 @default.
- W1991808150 date "2014-02-01" @default.
- W1991808150 modified "2023-10-02" @default.
- W1991808150 title "The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells" @default.
- W1991808150 cites W1963643013 @default.
- W1991808150 cites W1966569892 @default.
- W1991808150 cites W1969200465 @default.
- W1991808150 cites W1969774930 @default.
- W1991808150 cites W1973089587 @default.
- W1991808150 cites W1974384763 @default.
- W1991808150 cites W1974989261 @default.
- W1991808150 cites W1975013988 @default.
- W1991808150 cites W1981139878 @default.
- W1991808150 cites W1981774371 @default.
- W1991808150 cites W1981920590 @default.
- W1991808150 cites W1984699863 @default.
- W1991808150 cites W1985014243 @default.
- W1991808150 cites W1985764722 @default.
- W1991808150 cites W1988347595 @default.
- W1991808150 cites W1989436447 @default.
- W1991808150 cites W1993006648 @default.
- W1991808150 cites W1998777645 @default.
- W1991808150 cites W2002697510 @default.
- W1991808150 cites W2003041151 @default.
- W1991808150 cites W2006344735 @default.
- W1991808150 cites W2007328532 @default.
- W1991808150 cites W2013741570 @default.
- W1991808150 cites W2013974672 @default.
- W1991808150 cites W2015979204 @default.
- W1991808150 cites W2018013954 @default.
- W1991808150 cites W2024250498 @default.
- W1991808150 cites W2025291140 @default.
- W1991808150 cites W2027810531 @default.
- W1991808150 cites W2034149288 @default.
- W1991808150 cites W2037023035 @default.
- W1991808150 cites W2039296434 @default.
- W1991808150 cites W2039397696 @default.
- W1991808150 cites W2045582146 @default.
- W1991808150 cites W2047710667 @default.
- W1991808150 cites W2054635074 @default.
- W1991808150 cites W2055867153 @default.
- W1991808150 cites W2055940657 @default.
- W1991808150 cites W2062301369 @default.
- W1991808150 cites W2068834460 @default.
- W1991808150 cites W2070989321 @default.
- W1991808150 cites W2080319486 @default.
- W1991808150 cites W2080634528 @default.
- W1991808150 cites W2088473349 @default.
- W1991808150 cites W2089210429 @default.
- W1991808150 cites W2090875242 @default.
- W1991808150 cites W2099052265 @default.
- W1991808150 cites W2100122781 @default.
- W1991808150 cites W2101904950 @default.
- W1991808150 cites W2103052217 @default.
- W1991808150 cites W2105534871 @default.
- W1991808150 cites W2106578670 @default.
- W1991808150 cites W2112668385 @default.
- W1991808150 cites W2113396371 @default.
- W1991808150 cites W2122152063 @default.
- W1991808150 cites W2124701312 @default.
- W1991808150 cites W2125527918 @default.
- W1991808150 cites W2125862902 @default.
- W1991808150 cites W2127529738 @default.
- W1991808150 cites W2128231056 @default.
- W1991808150 cites W2128754233 @default.
- W1991808150 cites W2129477690 @default.
- W1991808150 cites W2130804510 @default.
- W1991808150 cites W2134208433 @default.
- W1991808150 cites W2144023435 @default.
- W1991808150 cites W2147321167 @default.
- W1991808150 cites W2152264767 @default.
- W1991808150 cites W2154421213 @default.
- W1991808150 cites W2157246902 @default.
- W1991808150 doi "https://doi.org/10.1016/j.biomaterials.2013.11.023" @default.
- W1991808150 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24331708" @default.
- W1991808150 hasPublicationYear "2014" @default.
- W1991808150 type Work @default.
- W1991808150 sameAs 1991808150 @default.
- W1991808150 citedByCount "150" @default.
- W1991808150 countsByYear W19918081502014 @default.
- W1991808150 countsByYear W19918081502015 @default.
- W1991808150 countsByYear W19918081502016 @default.
- W1991808150 countsByYear W19918081502017 @default.
- W1991808150 countsByYear W19918081502018 @default.
- W1991808150 countsByYear W19918081502019 @default.
- W1991808150 countsByYear W19918081502020 @default.
- W1991808150 countsByYear W19918081502021 @default.
- W1991808150 countsByYear W19918081502022 @default.
- W1991808150 countsByYear W19918081502023 @default.
- W1991808150 crossrefType "journal-article" @default.
- W1991808150 hasAuthorship W1991808150A5003512608 @default.
- W1991808150 hasAuthorship W1991808150A5008963986 @default.