Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991819048> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W1991819048 endingPage "116" @default.
- W1991819048 startingPage "97" @default.
- W1991819048 abstract "A Gel'fand model for a finite group G is a complex representation of G which is isomorphic to the direct sum of all the irreducible representations of G (see [J. Soto-Andrade, Geometrical Gel'fand models, tensor quotients and Weyl representations, in: Proc. Sympos. Pure Math., vol. 47 (2), Amer. Math. Soc., Providence, RI, 1987, pp. 306–316. [12] ]). Gel'fand models for the symmetric group, Weyl groups of type B n and the linear group over a finite field can be found in [C. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, New York, 1988. [6] ; J.L. Aguado, J.O. Araujo, A Gel'fand model for the symmetric group, Comm. Algebra 29 (4) (2001) 1841–1851; J.O. Araujo, A Gel'fand model for a Weyl group of type B n , Beiträge Algebra Geom. 44 (2) (2003) 359–373; A.A. Klyachko, Models for the complex representations of the groups G ( n , q ) , Math. USSR Sb. 48 (1984) 365–380. [10] ]. When K is a field of characteristic zero and G is a finite subgroup of the linear group, we give a finite-dimensional K -subspace N G of the polynomial ring K [ x 1 , … , x n ] . If G is a Weyl group of type A n or B n (see [N. Bourbaki, Éléments de mathématique. Groupes et Algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, vol. 34, Hermann, 1968. [4] ]), N G provides a Gel'fand model for these groups as shown in [J.L. Aguado, J.O. Araujo, A Gel'fand model for the symmetric group, Comm. Algebra 29 (4) (2001) 1841–1851; J.O. Araujo, A Gel'fand model for a Weyl group of type B n , Beiträge Algebra Geom. 44 (2) (2003) 359–373]. In this work we show that if G is a Weyl group of type D 2 n + 1 , N D 2 n + 1 provides a Gel'fand model for this group. We also describe completely N D 2 n but this is not a Gel'fand model for a Weyl group of type D 2 n , instead a subspace of N D 2 n , N ˜ D 2 n is a Gel'fand model. We also give simple proofs of the branching rules D n ↪ B n , a generator for each simple D n -module and a formula for the dimension for all the simple B n -modules and all the simple D n -modules." @default.
- W1991819048 created "2016-06-24" @default.
- W1991819048 creator A5006104232 @default.
- W1991819048 creator A5083346587 @default.
- W1991819048 date "2005-12-01" @default.
- W1991819048 modified "2023-09-26" @default.
- W1991819048 title "A Gel'fand model for a Weyl group of type <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML altimg=si1.gif overflow=scroll><mml:msub><mml:mi>D</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:math> and the branching rules <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML altimg=si2.gif overflow=scroll><mml:msub><mml:mi>D</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:mo>↪</mml:mo><mml:msub><mml:mi>B</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:math>" @default.
- W1991819048 cites W2047934348 @default.
- W1991819048 cites W2051897724 @default.
- W1991819048 cites W2052011341 @default.
- W1991819048 cites W2090186021 @default.
- W1991819048 doi "https://doi.org/10.1016/j.jalgebra.2005.09.001" @default.
- W1991819048 hasPublicationYear "2005" @default.
- W1991819048 type Work @default.
- W1991819048 sameAs 1991819048 @default.
- W1991819048 citedByCount "11" @default.
- W1991819048 countsByYear W19918190482012 @default.
- W1991819048 countsByYear W19918190482014 @default.
- W1991819048 crossrefType "journal-article" @default.
- W1991819048 hasAuthorship W1991819048A5006104232 @default.
- W1991819048 hasAuthorship W1991819048A5083346587 @default.
- W1991819048 hasConcept C114614502 @default.
- W1991819048 hasConcept C121332964 @default.
- W1991819048 hasConcept C128622974 @default.
- W1991819048 hasConcept C134306372 @default.
- W1991819048 hasConcept C136119220 @default.
- W1991819048 hasConcept C143669375 @default.
- W1991819048 hasConcept C172331165 @default.
- W1991819048 hasConcept C18903297 @default.
- W1991819048 hasConcept C202444582 @default.
- W1991819048 hasConcept C2777299769 @default.
- W1991819048 hasConcept C2781311116 @default.
- W1991819048 hasConcept C33923547 @default.
- W1991819048 hasConcept C40233952 @default.
- W1991819048 hasConcept C62520636 @default.
- W1991819048 hasConcept C86803240 @default.
- W1991819048 hasConcept C90119067 @default.
- W1991819048 hasConcept C9652623 @default.
- W1991819048 hasConceptScore W1991819048C114614502 @default.
- W1991819048 hasConceptScore W1991819048C121332964 @default.
- W1991819048 hasConceptScore W1991819048C128622974 @default.
- W1991819048 hasConceptScore W1991819048C134306372 @default.
- W1991819048 hasConceptScore W1991819048C136119220 @default.
- W1991819048 hasConceptScore W1991819048C143669375 @default.
- W1991819048 hasConceptScore W1991819048C172331165 @default.
- W1991819048 hasConceptScore W1991819048C18903297 @default.
- W1991819048 hasConceptScore W1991819048C202444582 @default.
- W1991819048 hasConceptScore W1991819048C2777299769 @default.
- W1991819048 hasConceptScore W1991819048C2781311116 @default.
- W1991819048 hasConceptScore W1991819048C33923547 @default.
- W1991819048 hasConceptScore W1991819048C40233952 @default.
- W1991819048 hasConceptScore W1991819048C62520636 @default.
- W1991819048 hasConceptScore W1991819048C86803240 @default.
- W1991819048 hasConceptScore W1991819048C90119067 @default.
- W1991819048 hasConceptScore W1991819048C9652623 @default.
- W1991819048 hasIssue "1" @default.
- W1991819048 hasLocation W19918190481 @default.
- W1991819048 hasOpenAccess W1991819048 @default.
- W1991819048 hasPrimaryLocation W19918190481 @default.
- W1991819048 hasRelatedWork W1779867951 @default.
- W1991819048 hasRelatedWork W2019004897 @default.
- W1991819048 hasRelatedWork W2063684714 @default.
- W1991819048 hasRelatedWork W2119613849 @default.
- W1991819048 hasRelatedWork W2122817261 @default.
- W1991819048 hasRelatedWork W2493343372 @default.
- W1991819048 hasRelatedWork W2621219949 @default.
- W1991819048 hasRelatedWork W2964247741 @default.
- W1991819048 hasRelatedWork W3100854957 @default.
- W1991819048 hasRelatedWork W4287811589 @default.
- W1991819048 hasVolume "294" @default.
- W1991819048 isParatext "false" @default.
- W1991819048 isRetracted "false" @default.
- W1991819048 magId "1991819048" @default.
- W1991819048 workType "article" @default.