Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991844158> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1991844158 abstract "ChIPseq is a widely used technique for investigating protein-DNA interactions. Read density profiles are generated by using next-sequencing of protein-bound DNA and aligning the short reads to a reference genome. Enriched regions are revealed as peaks, which often differ dramatically in shape, depending on the target protein(1). For example, transcription factors often bind in a site- and sequence-specific manner and tend to produce punctate peaks, while histone modifications are more pervasive and are characterized by broad, diffuse islands of enrichment(2). Reliably identifying these regions was the focus of our work. Algorithms for analyzing ChIPseq data have employed various methodologies, from heuristics(3-5) to more rigorous statistical models, e.g. Hidden Markov Models (HMMs)(6-8). We sought a solution that minimized the necessity for difficult-to-define, ad hoc parameters that often compromise resolution and lessen the intuitive usability of the tool. With respect to HMM-based methods, we aimed to curtail parameter estimation procedures and simple, finite state classifications that are often utilized. Additionally, conventional ChIPseq data analysis involves categorization of the expected read density profiles as either punctate or diffuse followed by subsequent application of the appropriate tool. We further aimed to replace the need for these two distinct models with a single, more versatile model, which can capably address the entire spectrum of data types. To meet these objectives, we first constructed a statistical framework that naturally modeled ChIPseq data structures using a cutting edge advance in HMMs(9), which utilizes only explicit formulas-an innovation crucial to its performance advantages. More sophisticated then heuristic models, our HMM accommodates infinite hidden states through a Bayesian model. We applied it to identifying reasonable change points in read density, which further define segments of enrichment. Our analysis revealed how our Bayesian Change Point (BCP) algorithm had a reduced computational complexity-evidenced by an abridged run time and memory footprint. The BCP algorithm was successfully applied to both punctate peak and diffuse island identification with robust accuracy and limited user-defined parameters. This illustrated both its versatility and ease of use. Consequently, we believe it can be implemented readily across broad ranges of data types and end users in a manner that is easily compared and contrasted, making it a great tool for ChIPseq data analysis that can aid in collaboration and corroboration between research groups. Here, we demonstrate the application of BCP to existing transcription factor(10,11) and epigenetic data(12) to illustrate its usefulness." @default.
- W1991844158 created "2016-06-24" @default.
- W1991844158 creator A5022819754 @default.
- W1991844158 creator A5046917602 @default.
- W1991844158 creator A5058814283 @default.
- W1991844158 creator A5090567392 @default.
- W1991844158 date "2012-12-10" @default.
- W1991844158 modified "2023-10-16" @default.
- W1991844158 title "A Novel Bayesian Change-point Algorithm for Genome-wide Analysis of Diverse ChIPseq Data Types" @default.
- W1991844158 cites W2015416439 @default.
- W1991844158 cites W2016202595 @default.
- W1991844158 cites W2059699217 @default.
- W1991844158 cites W2084160423 @default.
- W1991844158 cites W2095365870 @default.
- W1991844158 cites W2101384205 @default.
- W1991844158 cites W2104865962 @default.
- W1991844158 cites W2108871359 @default.
- W1991844158 cites W2125114453 @default.
- W1991844158 cites W2142570576 @default.
- W1991844158 cites W2146648681 @default.
- W1991844158 cites W2166898290 @default.
- W1991844158 cites W2171111703 @default.
- W1991844158 cites W2171808845 @default.
- W1991844158 cites W2312449754 @default.
- W1991844158 doi "https://doi.org/10.3791/4273" @default.
- W1991844158 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3565849" @default.
- W1991844158 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23271069" @default.
- W1991844158 hasPublicationYear "2012" @default.
- W1991844158 type Work @default.
- W1991844158 sameAs 1991844158 @default.
- W1991844158 citedByCount "3" @default.
- W1991844158 countsByYear W19918441582014 @default.
- W1991844158 countsByYear W19918441582015 @default.
- W1991844158 countsByYear W19918441582018 @default.
- W1991844158 crossrefType "journal-article" @default.
- W1991844158 hasAuthorship W1991844158A5022819754 @default.
- W1991844158 hasAuthorship W1991844158A5046917602 @default.
- W1991844158 hasAuthorship W1991844158A5058814283 @default.
- W1991844158 hasAuthorship W1991844158A5090567392 @default.
- W1991844158 hasBestOaLocation W19918441582 @default.
- W1991844158 hasConcept C107673813 @default.
- W1991844158 hasConcept C111919701 @default.
- W1991844158 hasConcept C11413529 @default.
- W1991844158 hasConcept C114289077 @default.
- W1991844158 hasConcept C119857082 @default.
- W1991844158 hasConcept C127705205 @default.
- W1991844158 hasConcept C154945302 @default.
- W1991844158 hasConcept C23224414 @default.
- W1991844158 hasConcept C41008148 @default.
- W1991844158 hasConcept C70721500 @default.
- W1991844158 hasConcept C86803240 @default.
- W1991844158 hasConceptScore W1991844158C107673813 @default.
- W1991844158 hasConceptScore W1991844158C111919701 @default.
- W1991844158 hasConceptScore W1991844158C11413529 @default.
- W1991844158 hasConceptScore W1991844158C114289077 @default.
- W1991844158 hasConceptScore W1991844158C119857082 @default.
- W1991844158 hasConceptScore W1991844158C127705205 @default.
- W1991844158 hasConceptScore W1991844158C154945302 @default.
- W1991844158 hasConceptScore W1991844158C23224414 @default.
- W1991844158 hasConceptScore W1991844158C41008148 @default.
- W1991844158 hasConceptScore W1991844158C70721500 @default.
- W1991844158 hasConceptScore W1991844158C86803240 @default.
- W1991844158 hasIssue "70" @default.
- W1991844158 hasLocation W19918441581 @default.
- W1991844158 hasLocation W19918441582 @default.
- W1991844158 hasLocation W19918441583 @default.
- W1991844158 hasLocation W19918441584 @default.
- W1991844158 hasOpenAccess W1991844158 @default.
- W1991844158 hasPrimaryLocation W19918441581 @default.
- W1991844158 hasRelatedWork W1522517976 @default.
- W1991844158 hasRelatedWork W1756885467 @default.
- W1991844158 hasRelatedWork W1879609565 @default.
- W1991844158 hasRelatedWork W1983860569 @default.
- W1991844158 hasRelatedWork W2013725398 @default.
- W1991844158 hasRelatedWork W2097843717 @default.
- W1991844158 hasRelatedWork W2905364337 @default.
- W1991844158 hasRelatedWork W3200343048 @default.
- W1991844158 hasRelatedWork W4237873821 @default.
- W1991844158 hasRelatedWork W2135031460 @default.
- W1991844158 isParatext "false" @default.
- W1991844158 isRetracted "false" @default.
- W1991844158 magId "1991844158" @default.
- W1991844158 workType "article" @default.