Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991877465> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W1991877465 abstract "A biperiodical accelerating structure of compact electron accelerator with operating frequency 27 GHz will consider, results of the beam dynamics simulation will presented and the electrodynamics characteristics of the resonator will discussed. Also will be investigated the dynamics of the beam in the buncher and in the main section, the optimal parameters will choose. It will be shown that the energy equal to 6 MeV can be obtained at the section length of 50 cm. The current capturing coefficient is higher than 80 The proton therapy has some advantages comparatively widely used classical electron and gamma therapy. Protons deliver the dose at a relatively uniform low level until they have lost a considerable part of their energy, at point where the dose increase reaching a Bragg’s peak close to the end of the proton path length. This allows providing a successful control of the dose distribution and considerable reduces the potential for damage to surrounding tissues. Proton cancer therapy is developing based on normal conducting proton synchrotrons by Optivus, Hitachi, Mitsubishi or cyclotrons by IBA, Still River Systems, Varian. Traditional characteristics of such facilities are the energy of the beam about 240 MeV with fluently regulation, possibility of control of beam envelope from 3 to 6 mm, intensity of the beam about 10 particles per second and energy homogeneity in the Bragg’s peak. The very high procedure cost caused by accelerator and its engineering systems cost is main factor limiting proton therapy application and ideas to reduce the cost are very actual. The proton beam can be accelerated also in linac, but main limitation is a low rate of the energy gain that involves increasing the accelerator length. Superconductivity allows to essentially reduce the linac length, that is important by economic and technical aspects. Fast progress in SC linacs development allows proposing their using for medical application. SC linac’s advantages are simplicity of input and output of particles by means of linearity trajectory, high current densities, high accelerating gradient and small power losses nearly 10−4 W/m. It should be noted that the beam energy can be easy varied in linac by RF field amplitude and phase control in a number of final cavities. A superconducting linac is based on an array of short identical independently phased cavities [1]. By specific phasing of the RF cavities one can provide a stable particle motion in the accelerator. The geometrical velocity βGof the RF wave is constant for any group of cavities and the number of such groups in linac should be minimized to reduce the accelerator cost. Beam focusing can be provided with help of solenoids of quadrupoles, following each cavity or with help of RF focusing [2]. The parameters choose and the linac structure optimization, consisting of independently phased cavities and solenoids will exposed in this report using BEAMDULAC-SCL code, developed at the laboratory DINUS at MEPhI and allows to do the comprehensive research of beam dynamics in a different structures using many methods of the acceleration [3]. The beam dynamics was simulated for 240 MeV SC linac. We use the slipping factor 18%, so the accelerator will be divided into four cavities group with βG = 0.09, 0.18, 0.31 and 0.49 respectively. First two groups consist of cavities having two accelerating gaps, the third and the fourth consist of three-cell cavities (see Fig. 1). Every part include own range of energy, depending on β. Figure 1. Slipping factor value depending on β Beam dynamics analysis results for the first part having the beam energy range from 2.4 to 10.4 MeV will be present bellow as an example. The RF field amplitude for each cavity is equal 3.21 MV/m, the length of each cavity is 0.184 m, the particle phase into RF field is -25°and operating frequency is f = 176 MHz Necessary value of the magnetic field equal to 1.25 T makes it possible to control the medical beam envelope nearly 5 mm. Accelerator parameters provides the high beam motion stability are given in Table 1 for all four cavities groups. The Proceedings of BDO-2014, Saint-Petersburg, Russia, June 30 – July 04, 2014 20 978-1-4799-5321-9/14/$31.00©2014 IEEE total length of the accelerator which consists of four sections will be equal 61.7 m (see Table 1). Table I. THE ACCELERATOR PARAMETERS No of range 1 2 3 4 Input energyWin, MeV 2.4 10.4 43.6 123.2 Output energyWout, MeV 10.4 43.6 123.2 240 Geometrical phase velocity βg 0.09 0.18 0.31 0.49 Resonance frequency fres, MHz 176 176 352 704 Length of cavityLres, m 0.184 0.374 0.487 0.386 Intensity E, MV/m 3.21 5.96 8.87 14.2 Length of solenoid Lsol, m 0.2 0.2 0.2 0.2 Magnetic induction B, Tl 1.25 1.7 2.3 3 Length of gapLgap, m 0.1 0.1 0.1 0.1 Length of periodLper , m 0.584 0.774 0.887 0.786 Number of periodsNper 16 18 22 24 Also beam dynamics simulation directed to produce the fluently adjustment of the beam energy in range 150-240 MeV with beam quality preserving was studied. Such adjustment of energy can be easily realized in the hardware way without use of padding filters by means of the voltage or the input phase tuning in resonators. The received results show that such parameters variation not strongly affected on beam envelope and emittance. Beam transmission coefficient reduces to 98 % at achievement of energy 150 MeV. As the conclusion, a complex analysis of the proton beam dynamics stability was done. The analysis shows that it is possible to develop a proton treatment linear accelerator with parameters necessary for containment of a medical bunch and for beam envelope control. The study of dynamics of a bunch is conducted at an energy variation in the range from 150 to 240 MeV with beam quality preservation." @default.
- W1991877465 created "2016-06-24" @default.
- W1991877465 creator A5024958736 @default.
- W1991877465 creator A5080531582 @default.
- W1991877465 creator A5087820707 @default.
- W1991877465 date "2014-06-01" @default.
- W1991877465 modified "2023-09-24" @default.
- W1991877465 title "Beam dynamics simulation in the proton therapy SC linac with energy up to 240 MeV" @default.
- W1991877465 cites W2075845276 @default.
- W1991877465 cites W2557887774 @default.
- W1991877465 doi "https://doi.org/10.1109/bdo.2014.6889999" @default.
- W1991877465 hasPublicationYear "2014" @default.
- W1991877465 type Work @default.
- W1991877465 sameAs 1991877465 @default.
- W1991877465 citedByCount "0" @default.
- W1991877465 crossrefType "proceedings-article" @default.
- W1991877465 hasAuthorship W1991877465A5024958736 @default.
- W1991877465 hasAuthorship W1991877465A5080531582 @default.
- W1991877465 hasAuthorship W1991877465A5087820707 @default.
- W1991877465 hasConcept C116915560 @default.
- W1991877465 hasConcept C120665830 @default.
- W1991877465 hasConcept C121332964 @default.
- W1991877465 hasConcept C127413603 @default.
- W1991877465 hasConcept C147120987 @default.
- W1991877465 hasConcept C168834538 @default.
- W1991877465 hasConcept C180048950 @default.
- W1991877465 hasConcept C184779094 @default.
- W1991877465 hasConcept C185544564 @default.
- W1991877465 hasConcept C189166818 @default.
- W1991877465 hasConcept C2779244869 @default.
- W1991877465 hasConcept C2780944729 @default.
- W1991877465 hasConcept C30475298 @default.
- W1991877465 hasConcept C39527238 @default.
- W1991877465 hasConcept C54516573 @default.
- W1991877465 hasConceptScore W1991877465C116915560 @default.
- W1991877465 hasConceptScore W1991877465C120665830 @default.
- W1991877465 hasConceptScore W1991877465C121332964 @default.
- W1991877465 hasConceptScore W1991877465C127413603 @default.
- W1991877465 hasConceptScore W1991877465C147120987 @default.
- W1991877465 hasConceptScore W1991877465C168834538 @default.
- W1991877465 hasConceptScore W1991877465C180048950 @default.
- W1991877465 hasConceptScore W1991877465C184779094 @default.
- W1991877465 hasConceptScore W1991877465C185544564 @default.
- W1991877465 hasConceptScore W1991877465C189166818 @default.
- W1991877465 hasConceptScore W1991877465C2779244869 @default.
- W1991877465 hasConceptScore W1991877465C2780944729 @default.
- W1991877465 hasConceptScore W1991877465C30475298 @default.
- W1991877465 hasConceptScore W1991877465C39527238 @default.
- W1991877465 hasConceptScore W1991877465C54516573 @default.
- W1991877465 hasLocation W19918774651 @default.
- W1991877465 hasOpenAccess W1991877465 @default.
- W1991877465 hasPrimaryLocation W19918774651 @default.
- W1991877465 hasRelatedWork W1489411710 @default.
- W1991877465 hasRelatedWork W1587547632 @default.
- W1991877465 hasRelatedWork W2096858249 @default.
- W1991877465 hasRelatedWork W2123959411 @default.
- W1991877465 hasRelatedWork W2143436544 @default.
- W1991877465 hasRelatedWork W2184351124 @default.
- W1991877465 hasRelatedWork W2184999967 @default.
- W1991877465 hasRelatedWork W2186618839 @default.
- W1991877465 hasRelatedWork W2186906434 @default.
- W1991877465 hasRelatedWork W2189506193 @default.
- W1991877465 hasRelatedWork W2232659277 @default.
- W1991877465 hasRelatedWork W2287579073 @default.
- W1991877465 hasRelatedWork W2559062689 @default.
- W1991877465 hasRelatedWork W2605781326 @default.
- W1991877465 hasRelatedWork W2973755636 @default.
- W1991877465 hasRelatedWork W3041497129 @default.
- W1991877465 hasRelatedWork W3105213526 @default.
- W1991877465 hasRelatedWork W47594108 @default.
- W1991877465 hasRelatedWork W68782472 @default.
- W1991877465 hasRelatedWork W2130634875 @default.
- W1991877465 isParatext "false" @default.
- W1991877465 isRetracted "false" @default.
- W1991877465 magId "1991877465" @default.
- W1991877465 workType "article" @default.