Matches in SemOpenAlex for { <https://semopenalex.org/work/W1991951822> ?p ?o ?g. }
- W1991951822 endingPage "1540" @default.
- W1991951822 startingPage "1524" @default.
- W1991951822 abstract "An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous assessment of the solution accuracy; (ii) a pair of low dielectric charged spheres embedded in a ionic solvent to compute electrostatic interaction free energies as a function of the distance between sphere centers; (iii) surface potentials of proteins, nucleic acids and their larger-scale assemblies such as ribosomes; and (iv) electrostatic solvation free energies and their salt sensitivities - obtained with both linear and nonlinear Poisson-Boltzmann equation - for a large set of proteins. These latter results along with timings can serve as benchmarks for comparing the performance of different PBE solvers." @default.
- W1991951822 created "2016-06-24" @default.
- W1991951822 creator A5005951988 @default.
- W1991951822 creator A5067145582 @default.
- W1991951822 date "2011-04-15" @default.
- W1991951822 modified "2023-10-01" @default.
- W1991951822 title "A Fast and Robust Poisson–Boltzmann Solver Based on Adaptive Cartesian Grids" @default.
- W1991951822 cites W1967737979 @default.
- W1991951822 cites W1967809254 @default.
- W1991951822 cites W1968475259 @default.
- W1991951822 cites W1973060079 @default.
- W1991951822 cites W1974507074 @default.
- W1991951822 cites W1977421709 @default.
- W1991951822 cites W1980637730 @default.
- W1991951822 cites W1997809760 @default.
- W1991951822 cites W1998245852 @default.
- W1991951822 cites W2001356585 @default.
- W1991951822 cites W2002659345 @default.
- W1991951822 cites W2002888567 @default.
- W1991951822 cites W2006450060 @default.
- W1991951822 cites W2013578231 @default.
- W1991951822 cites W2013919684 @default.
- W1991951822 cites W2016695653 @default.
- W1991951822 cites W2017717418 @default.
- W1991951822 cites W2020433423 @default.
- W1991951822 cites W2020433571 @default.
- W1991951822 cites W2022595302 @default.
- W1991951822 cites W2022860012 @default.
- W1991951822 cites W2025694445 @default.
- W1991951822 cites W2029582401 @default.
- W1991951822 cites W2029615301 @default.
- W1991951822 cites W2030841140 @default.
- W1991951822 cites W2032518125 @default.
- W1991951822 cites W2035955622 @default.
- W1991951822 cites W2041248383 @default.
- W1991951822 cites W2046771168 @default.
- W1991951822 cites W2047399603 @default.
- W1991951822 cites W2050397044 @default.
- W1991951822 cites W2051555156 @default.
- W1991951822 cites W2052085898 @default.
- W1991951822 cites W2053366430 @default.
- W1991951822 cites W2060683541 @default.
- W1991951822 cites W2062224822 @default.
- W1991951822 cites W2066126934 @default.
- W1991951822 cites W2068345651 @default.
- W1991951822 cites W2069002738 @default.
- W1991951822 cites W2070407213 @default.
- W1991951822 cites W2078498331 @default.
- W1991951822 cites W2079243965 @default.
- W1991951822 cites W2080823722 @default.
- W1991951822 cites W2086333824 @default.
- W1991951822 cites W2092110472 @default.
- W1991951822 cites W2102514286 @default.
- W1991951822 cites W2102887078 @default.
- W1991951822 cites W2106768806 @default.
- W1991951822 cites W2110659779 @default.
- W1991951822 cites W2119062326 @default.
- W1991951822 cites W2120809282 @default.
- W1991951822 cites W2122199548 @default.
- W1991951822 cites W2124044606 @default.
- W1991951822 cites W2126652458 @default.
- W1991951822 cites W2129448953 @default.
- W1991951822 cites W2130462131 @default.
- W1991951822 cites W2134426542 @default.
- W1991951822 cites W2135735638 @default.
- W1991951822 cites W2145899756 @default.
- W1991951822 cites W2149537211 @default.
- W1991951822 cites W2150785142 @default.
- W1991951822 cites W2156160283 @default.
- W1991951822 cites W2159577634 @default.
- W1991951822 cites W2165327829 @default.
- W1991951822 cites W2169323393 @default.
- W1991951822 cites W2997137919 @default.
- W1991951822 doi "https://doi.org/10.1021/ct1006983" @default.
- W1991951822 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3188438" @default.
- W1991951822 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21984876" @default.
- W1991951822 hasPublicationYear "2011" @default.
- W1991951822 type Work @default.
- W1991951822 sameAs 1991951822 @default.
- W1991951822 citedByCount "48" @default.
- W1991951822 countsByYear W19919518222012 @default.
- W1991951822 countsByYear W19919518222013 @default.
- W1991951822 countsByYear W19919518222014 @default.
- W1991951822 countsByYear W19919518222015 @default.
- W1991951822 countsByYear W19919518222016 @default.
- W1991951822 countsByYear W19919518222017 @default.
- W1991951822 countsByYear W19919518222018 @default.
- W1991951822 countsByYear W19919518222019 @default.
- W1991951822 countsByYear W19919518222020 @default.
- W1991951822 countsByYear W19919518222021 @default.
- W1991951822 countsByYear W19919518222022 @default.
- W1991951822 countsByYear W19919518222023 @default.
- W1991951822 crossrefType "journal-article" @default.
- W1991951822 hasAuthorship W1991951822A5005951988 @default.
- W1991951822 hasAuthorship W1991951822A5067145582 @default.
- W1991951822 hasBestOaLocation W19919518222 @default.
- W1991951822 hasConcept C11413529 @default.
- W1991951822 hasConcept C114614502 @default.