Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992023107> ?p ?o ?g. }
- W1992023107 endingPage "597" @default.
- W1992023107 startingPage "597" @default.
- W1992023107 abstract "In this article we prove the optimal polynomial lower bound for the number of resonances of a surface with hyperbolic ends. We also give Weyl asymptotics for the relative scattering phase of such a surface. The proofs are based on trace formulae analogous to those of the Euclidean odd-dimensional scattering. The main technical ingredient is a new proof of the Poisson formula (Theorem 5.7) which is applicable in the Euclidean case as well. Our lower bound seems to be the first example of an optimal polynomial lower bound for the number of resonances holding for a general class of higher dimensional elliptic operators with no symmetries. The previous general lower bounds or asymptotics were either nonoptimal ([25], [58], [9]), one-dimensional or radial ([65], [67] and [54], [41]1) or they required some degeneracy of the" @default.
- W1992023107 created "2016-06-24" @default.
- W1992023107 creator A5066204029 @default.
- W1992023107 creator A5080068956 @default.
- W1992023107 date "1997-05-01" @default.
- W1992023107 modified "2023-09-29" @default.
- W1992023107 title "Scattering Asymptotics for Riemann Surfaces" @default.
- W1992023107 cites W1502090468 @default.
- W1992023107 cites W1520848524 @default.
- W1992023107 cites W1537906002 @default.
- W1992023107 cites W1545201582 @default.
- W1992023107 cites W182165617 @default.
- W1992023107 cites W1906752274 @default.
- W1992023107 cites W1969202428 @default.
- W1992023107 cites W1971135773 @default.
- W1992023107 cites W1971551140 @default.
- W1992023107 cites W1971918648 @default.
- W1992023107 cites W1977652771 @default.
- W1992023107 cites W1980385730 @default.
- W1992023107 cites W1983356177 @default.
- W1992023107 cites W1994519364 @default.
- W1992023107 cites W2007225893 @default.
- W1992023107 cites W2011753144 @default.
- W1992023107 cites W2014698679 @default.
- W1992023107 cites W2029191352 @default.
- W1992023107 cites W2033508337 @default.
- W1992023107 cites W2044076457 @default.
- W1992023107 cites W2044624329 @default.
- W1992023107 cites W2050300670 @default.
- W1992023107 cites W2050551110 @default.
- W1992023107 cites W2053653072 @default.
- W1992023107 cites W2053985023 @default.
- W1992023107 cites W2056996244 @default.
- W1992023107 cites W2064812758 @default.
- W1992023107 cites W2076417530 @default.
- W1992023107 cites W2077214310 @default.
- W1992023107 cites W2077371597 @default.
- W1992023107 cites W2091217843 @default.
- W1992023107 cites W2095319438 @default.
- W1992023107 cites W2124345081 @default.
- W1992023107 cites W2317883788 @default.
- W1992023107 cites W2321190519 @default.
- W1992023107 cites W2330299142 @default.
- W1992023107 cites W2482762127 @default.
- W1992023107 cites W2565324590 @default.
- W1992023107 cites W2734496869 @default.
- W1992023107 cites W2920142520 @default.
- W1992023107 cites W3025618065 @default.
- W1992023107 cites W305781934 @default.
- W1992023107 cites W3094360416 @default.
- W1992023107 cites W650549686 @default.
- W1992023107 cites W70769460 @default.
- W1992023107 cites W89047353 @default.
- W1992023107 cites W2526764154 @default.
- W1992023107 doi "https://doi.org/10.2307/2951846" @default.
- W1992023107 hasPublicationYear "1997" @default.
- W1992023107 type Work @default.
- W1992023107 sameAs 1992023107 @default.
- W1992023107 citedByCount "161" @default.
- W1992023107 countsByYear W19920231072012 @default.
- W1992023107 countsByYear W19920231072013 @default.
- W1992023107 countsByYear W19920231072014 @default.
- W1992023107 countsByYear W19920231072015 @default.
- W1992023107 countsByYear W19920231072016 @default.
- W1992023107 countsByYear W19920231072017 @default.
- W1992023107 countsByYear W19920231072018 @default.
- W1992023107 countsByYear W19920231072019 @default.
- W1992023107 countsByYear W19920231072020 @default.
- W1992023107 countsByYear W19920231072021 @default.
- W1992023107 crossrefType "journal-article" @default.
- W1992023107 hasAuthorship W1992023107A5066204029 @default.
- W1992023107 hasAuthorship W1992023107A5080068956 @default.
- W1992023107 hasConcept C112468886 @default.
- W1992023107 hasConcept C134306372 @default.
- W1992023107 hasConcept C18556879 @default.
- W1992023107 hasConcept C199479865 @default.
- W1992023107 hasConcept C202444582 @default.
- W1992023107 hasConcept C33923547 @default.
- W1992023107 hasConceptScore W1992023107C112468886 @default.
- W1992023107 hasConceptScore W1992023107C134306372 @default.
- W1992023107 hasConceptScore W1992023107C18556879 @default.
- W1992023107 hasConceptScore W1992023107C199479865 @default.
- W1992023107 hasConceptScore W1992023107C202444582 @default.
- W1992023107 hasConceptScore W1992023107C33923547 @default.
- W1992023107 hasIssue "3" @default.
- W1992023107 hasLocation W19920231071 @default.
- W1992023107 hasOpenAccess W1992023107 @default.
- W1992023107 hasPrimaryLocation W19920231071 @default.
- W1992023107 hasRelatedWork W1986620105 @default.
- W1992023107 hasRelatedWork W2055249302 @default.
- W1992023107 hasRelatedWork W2093436322 @default.
- W1992023107 hasRelatedWork W2111962472 @default.
- W1992023107 hasRelatedWork W2562096426 @default.
- W1992023107 hasRelatedWork W2962874483 @default.
- W1992023107 hasRelatedWork W3127622429 @default.
- W1992023107 hasRelatedWork W4244465134 @default.
- W1992023107 hasRelatedWork W4251905010 @default.
- W1992023107 hasRelatedWork W4283211257 @default.