Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992079344> ?p ?o ?g. }
- W1992079344 endingPage "431" @default.
- W1992079344 startingPage "427" @default.
- W1992079344 abstract "A highly specific chemical crosslinking method is used to trap a complex between an acyl carrier protein and a fatty acid dehydratase during fatty acid biosynthesis; subsequent X-ray crystallography, NMR spectroscopy and molecular dynamics simulations techniques enable the detailed study of this complex. During fatty acid and polyketide biosynthesis the growing polymer chain is stabilized by acyl carrier proteins (ACPs), but the transient nature of the process makes it difficult to visualize the molecular mechanisms involved. Two papers published in this issue of Nature use strategies that circumvent this problem. Ali Masoudi et al. solve the X-ray crystal structures of an ACP from Escherichia coli bound to LpxD, an acyltransferase in the lipid A biosynthetic pathway, in three different states: an intact acyl-ACP, a hydrolysed-acyl-ACP, and a holo-ACP form. Alignment of these structures makes it possible to visualize the conformational changes that take place in the ACP during catalysis. Chi Nguyen et al. use a crosslinking probe to tether an ACP to an active site histidine of one of its catalytic enzymes, the dehydratase FabA from E. coli. They obtain a high-resolution X-ray crystal structure of the stabilized ACP–FabA complex and use NMR spectroscopy to probe the dynamics of ACP–FabA interactions. Their experiments support a 'switchblade' model. This crosslink-probe approach can be applied to other carrier protein partners in metabolic and signalling pathways. Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis1. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain2. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway3,4,5. The transient nature of ACP–enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein–protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP–FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4′-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease." @default.
- W1992079344 created "2016-06-24" @default.
- W1992079344 creator A5008905531 @default.
- W1992079344 creator A5009794886 @default.
- W1992079344 creator A5015837947 @default.
- W1992079344 creator A5033570094 @default.
- W1992079344 creator A5038238363 @default.
- W1992079344 creator A5040208736 @default.
- W1992079344 creator A5044309463 @default.
- W1992079344 creator A5046476675 @default.
- W1992079344 creator A5046677875 @default.
- W1992079344 creator A5057335177 @default.
- W1992079344 creator A5064825062 @default.
- W1992079344 creator A5071992013 @default.
- W1992079344 creator A5079075318 @default.
- W1992079344 creator A5081447261 @default.
- W1992079344 date "2013-12-22" @default.
- W1992079344 modified "2023-10-10" @default.
- W1992079344 title "Trapping the dynamic acyl carrier protein in fatty acid biosynthesis" @default.
- W1992079344 cites W1559225650 @default.
- W1992079344 cites W1625576173 @default.
- W1992079344 cites W1968152376 @default.
- W1992079344 cites W1969883879 @default.
- W1992079344 cites W1970716706 @default.
- W1992079344 cites W1973247586 @default.
- W1992079344 cites W1979700983 @default.
- W1992079344 cites W1980284892 @default.
- W1992079344 cites W1983483451 @default.
- W1992079344 cites W1984748711 @default.
- W1992079344 cites W1990675281 @default.
- W1992079344 cites W1991227065 @default.
- W1992079344 cites W1997894244 @default.
- W1992079344 cites W2000254868 @default.
- W1992079344 cites W2005042667 @default.
- W1992079344 cites W2007278412 @default.
- W1992079344 cites W2010005033 @default.
- W1992079344 cites W2012871310 @default.
- W1992079344 cites W2033443315 @default.
- W1992079344 cites W2046344095 @default.
- W1992079344 cites W2074749288 @default.
- W1992079344 cites W2076533036 @default.
- W1992079344 cites W2093407764 @default.
- W1992079344 cites W2095726127 @default.
- W1992079344 cites W2125745291 @default.
- W1992079344 cites W2149515815 @default.
- W1992079344 cites W2155028909 @default.
- W1992079344 cites W2169670640 @default.
- W1992079344 cites W2463483422 @default.
- W1992079344 cites W4241169468 @default.
- W1992079344 doi "https://doi.org/10.1038/nature12810" @default.
- W1992079344 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4437705" @default.
- W1992079344 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24362570" @default.
- W1992079344 hasPublicationYear "2013" @default.
- W1992079344 type Work @default.
- W1992079344 sameAs 1992079344 @default.
- W1992079344 citedByCount "200" @default.
- W1992079344 countsByYear W19920793442014 @default.
- W1992079344 countsByYear W19920793442015 @default.
- W1992079344 countsByYear W19920793442016 @default.
- W1992079344 countsByYear W19920793442017 @default.
- W1992079344 countsByYear W19920793442018 @default.
- W1992079344 countsByYear W19920793442019 @default.
- W1992079344 countsByYear W19920793442020 @default.
- W1992079344 countsByYear W19920793442021 @default.
- W1992079344 countsByYear W19920793442022 @default.
- W1992079344 countsByYear W19920793442023 @default.
- W1992079344 crossrefType "journal-article" @default.
- W1992079344 hasAuthorship W1992079344A5008905531 @default.
- W1992079344 hasAuthorship W1992079344A5009794886 @default.
- W1992079344 hasAuthorship W1992079344A5015837947 @default.
- W1992079344 hasAuthorship W1992079344A5033570094 @default.
- W1992079344 hasAuthorship W1992079344A5038238363 @default.
- W1992079344 hasAuthorship W1992079344A5040208736 @default.
- W1992079344 hasAuthorship W1992079344A5044309463 @default.
- W1992079344 hasAuthorship W1992079344A5046476675 @default.
- W1992079344 hasAuthorship W1992079344A5046677875 @default.
- W1992079344 hasAuthorship W1992079344A5057335177 @default.
- W1992079344 hasAuthorship W1992079344A5064825062 @default.
- W1992079344 hasAuthorship W1992079344A5071992013 @default.
- W1992079344 hasAuthorship W1992079344A5079075318 @default.
- W1992079344 hasAuthorship W1992079344A5081447261 @default.
- W1992079344 hasBestOaLocation W19920793442 @default.
- W1992079344 hasConcept C181199279 @default.
- W1992079344 hasConcept C185592680 @default.
- W1992079344 hasConcept C2775970874 @default.
- W1992079344 hasConcept C2778460671 @default.
- W1992079344 hasConcept C2780786045 @default.
- W1992079344 hasConcept C2781374117 @default.
- W1992079344 hasConcept C48289651 @default.
- W1992079344 hasConcept C543025807 @default.
- W1992079344 hasConcept C553450214 @default.
- W1992079344 hasConcept C55493867 @default.
- W1992079344 hasConcept C71240020 @default.
- W1992079344 hasConceptScore W1992079344C181199279 @default.
- W1992079344 hasConceptScore W1992079344C185592680 @default.
- W1992079344 hasConceptScore W1992079344C2775970874 @default.
- W1992079344 hasConceptScore W1992079344C2778460671 @default.
- W1992079344 hasConceptScore W1992079344C2780786045 @default.