Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992079743> ?p ?o ?g. }
- W1992079743 endingPage "1365" @default.
- W1992079743 startingPage "1358" @default.
- W1992079743 abstract "Low intensity pulsed ultrasound (LIPUS) was reported to accelerate the rate of fracture healing. When LIPUS is applied to fractures transcutaneously, bone tissues at different depths are exposed to different ultrasound fields. Measurement of LIPUS shows pressure variations in near field (nearby transducer); uniform profile was found beyond it (far field). Moreover, we have reported that the therapeutic effect of LIPUS is dependent on the axial distance of ultrasound beam in rat fracture model. However, the mechanisms of how different axial distances of LIPUS influence the mechanotransduction of bone cells are not understood. To understand the cellular mechanisms underlying far field LIPUS on enhanced fracture healing in rat model, the present study investigated the effect of ultrasound axial distances on (1) osteocyte, the mechanosensor, and (2) mechanotransduction between osteocyte and pre-osteoblast (bone-forming cell) through paracrine signaling. We hypothesized that far field LIPUS could enhance the osteogenic activities of osteoblasts via paracrine factors secreted from osteocytes. The objective of this study was to investigate the effect of axial distances of LIPUS on osteocytes and osteocyte–osteoblast mechanotransduction. In this study, LIPUS (plane; 2.2 cm in diameter, 1.5 MHz sine wave, ISATA = 30 mW/cm2) was applied to osteocytes (mechanosensor) at three axial distances: 0 mm (near field), 60 mm (mid-near field) and 130 mm (far field). The conditioned medium of osteocytes (OCM) collected from these three groups were used to culture pre-osteoblasts (effector cell). In this study, (1) the direct effect of ultrasound fields on the mechanosensitivity of osteocytes; and (2) the osteogenic effect of different OCM treatments on pre-osteoblasts were assessed. The immunostaining results indicated the ultrasound beam at far field resulted in more β-catenin nuclear translocation in osteocytes than all other groups. This indicated that osteocytes could detect the acoustic differences of LIPUS at various axial distances. Furthermore, we found that the soluble factors secreted by far field LIPUS exposed osteocytes could further promote pre-osteoblasts cell migration, maturation (transition of cell proliferation into osteogenic differentiation), and matrix calcification. In summary, our results of this present study indicated that axial distance beyond near field could transmit ultrasound energy to osteocyte more efficiently. The LIPUS exposed osteocytes conveyed mechanical signals to pre-osteoblasts and regulated their osteogenic cellular activities via paracrine factors secretion. The soluble factors secreted by far field exposed osteocytes led to promotion in migration and maturation in pre-osteoblasts. This finding demonstrated the positive effects of far field LIPUS on stimulating osteocytes and promoting mechanotransduction between osteocytes and osteoblasts." @default.
- W1992079743 created "2016-06-24" @default.
- W1992079743 creator A5001580002 @default.
- W1992079743 creator A5030174843 @default.
- W1992079743 creator A5048863977 @default.
- W1992079743 creator A5049856530 @default.
- W1992079743 creator A5050133738 @default.
- W1992079743 date "2014-07-01" @default.
- W1992079743 modified "2023-10-01" @default.
- W1992079743 title "Osteocytes exposed to far field of therapeutic ultrasound promotes osteogenic cellular activities in pre-osteoblasts through soluble factors" @default.
- W1992079743 cites W1784155883 @default.
- W1992079743 cites W1975173830 @default.
- W1992079743 cites W1976975614 @default.
- W1992079743 cites W1977187755 @default.
- W1992079743 cites W1980869868 @default.
- W1992079743 cites W1984833486 @default.
- W1992079743 cites W1989257149 @default.
- W1992079743 cites W1990745892 @default.
- W1992079743 cites W1993845544 @default.
- W1992079743 cites W1995417183 @default.
- W1992079743 cites W1998985793 @default.
- W1992079743 cites W2000007601 @default.
- W1992079743 cites W2007478852 @default.
- W1992079743 cites W2011043197 @default.
- W1992079743 cites W2013316218 @default.
- W1992079743 cites W2019582558 @default.
- W1992079743 cites W2020035962 @default.
- W1992079743 cites W2024679248 @default.
- W1992079743 cites W2027215837 @default.
- W1992079743 cites W2030455830 @default.
- W1992079743 cites W2033379487 @default.
- W1992079743 cites W2034769349 @default.
- W1992079743 cites W2036120792 @default.
- W1992079743 cites W2044945522 @default.
- W1992079743 cites W2058423426 @default.
- W1992079743 cites W2060641807 @default.
- W1992079743 cites W2062966761 @default.
- W1992079743 cites W2067133247 @default.
- W1992079743 cites W2070862472 @default.
- W1992079743 cites W2073630365 @default.
- W1992079743 cites W2073907573 @default.
- W1992079743 cites W2084152511 @default.
- W1992079743 cites W2085821199 @default.
- W1992079743 cites W2086197605 @default.
- W1992079743 cites W2100677711 @default.
- W1992079743 cites W2101937547 @default.
- W1992079743 cites W2108210650 @default.
- W1992079743 cites W2119100530 @default.
- W1992079743 cites W2122804888 @default.
- W1992079743 cites W2122965155 @default.
- W1992079743 cites W2123265485 @default.
- W1992079743 cites W2123422742 @default.
- W1992079743 cites W2132309525 @default.
- W1992079743 cites W2137580023 @default.
- W1992079743 cites W2149943494 @default.
- W1992079743 cites W2153487842 @default.
- W1992079743 cites W2160086148 @default.
- W1992079743 cites W2162088346 @default.
- W1992079743 cites W2167452849 @default.
- W1992079743 cites W2167968716 @default.
- W1992079743 cites W2169762760 @default.
- W1992079743 cites W2170199100 @default.
- W1992079743 doi "https://doi.org/10.1016/j.ultras.2014.02.003" @default.
- W1992079743 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24560187" @default.
- W1992079743 hasPublicationYear "2014" @default.
- W1992079743 type Work @default.
- W1992079743 sameAs 1992079743 @default.
- W1992079743 citedByCount "31" @default.
- W1992079743 countsByYear W19920797432015 @default.
- W1992079743 countsByYear W19920797432016 @default.
- W1992079743 countsByYear W19920797432017 @default.
- W1992079743 countsByYear W19920797432018 @default.
- W1992079743 countsByYear W19920797432019 @default.
- W1992079743 countsByYear W19920797432020 @default.
- W1992079743 countsByYear W19920797432022 @default.
- W1992079743 countsByYear W19920797432023 @default.
- W1992079743 crossrefType "journal-article" @default.
- W1992079743 hasAuthorship W1992079743A5001580002 @default.
- W1992079743 hasAuthorship W1992079743A5030174843 @default.
- W1992079743 hasAuthorship W1992079743A5048863977 @default.
- W1992079743 hasAuthorship W1992079743A5049856530 @default.
- W1992079743 hasAuthorship W1992079743A5050133738 @default.
- W1992079743 hasConcept C105702510 @default.
- W1992079743 hasConcept C126838900 @default.
- W1992079743 hasConcept C136229726 @default.
- W1992079743 hasConcept C143753070 @default.
- W1992079743 hasConcept C170493617 @default.
- W1992079743 hasConcept C181104049 @default.
- W1992079743 hasConcept C185592680 @default.
- W1992079743 hasConcept C192562407 @default.
- W1992079743 hasConcept C202751555 @default.
- W1992079743 hasConcept C2778260815 @default.
- W1992079743 hasConcept C2778550726 @default.
- W1992079743 hasConcept C2779727089 @default.
- W1992079743 hasConcept C2780973866 @default.
- W1992079743 hasConcept C55493867 @default.
- W1992079743 hasConcept C71924100 @default.
- W1992079743 hasConcept C7876069 @default.