Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992150318> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W1992150318 endingPage "590" @default.
- W1992150318 startingPage "563" @default.
- W1992150318 abstract "Abstract The basic dynamics of a prolate spheroidal particle suspended in shear flow is studied using lattice Boltzmann simulations. The spheroid motion is determined by the particle Reynolds number ( ${mathit{Re}}_{p} $ ) and Stokes number ( $mathit{St}$ ), estimating the effects of fluid and particle inertia, respectively, compared with viscous forces on the particle. The particle Reynolds number is defined by ${mathit{Re}}_{p} = 4G{a}^{2} / nu $ , where $G$ is the shear rate, $a$ is the length of the spheroid major semi-axis and $nu $ is the kinematic viscosity. The Stokes number is defined as $mathit{St}= alpha boldsymbol{cdot} {mathit{Re}}_{p} $ , where $alpha $ is the solid-to-fluid density ratio. Here, a neutrally buoyant prolate spheroidal particle ( $mathit{St}= {mathit{Re}}_{p} $ ) of aspect ratio (major axis/minor axis) ${r}_{p} = 4$ is considered. The long-term rotational motion for different initial orientations and ${mathit{Re}}_{p} $ is explained by the dominant inertial effect on the particle. The transitions between rotational states are subsequently studied in detail in terms of nonlinear dynamics. Fluid inertia is seen to cause several bifurcations typical for a nonlinear system with odd symmetry around a double zero eigenvalue. Particle inertia gives rise to centrifugal forces which drives the particle to rotate with the symmetry axis in the flow-gradient plane (tumbling). At high ${mathit{Re}}_{p} $ , the motion is constrained to this planar motion regardless of initial orientation. At a certain critical Reynolds number, ${mathit{Re}}_{p} = {mathit{Re}}_{c} $ , a motionless (steady) state is created through an infinite-period saddle-node bifurcation and consequently the tumbling period near the transition is scaled as $vert {mathit{Re}}_{p} - {mathit{Re}}_{c} {vert }^{- 1/ 2} $ . Analyses in this paper show that if a transition from tumbling to steady state occurs at ${mathit{Re}}_{p} = {mathit{Re}}_{c} $ , then any parameter $beta $ (e.g. confinement or particle spacing) that influences the value of ${mathit{Re}}_{c} $ , such that ${mathit{Re}}_{p} = {mathit{Re}}_{c} $ as $beta = {beta }_{c} $ , will lead to a period that scales as $vert beta - {beta }_{c} {vert }^{- 1/ 2} $ and is independent of particle shape or any geometric aspect ratio in the flow." @default.
- W1992150318 created "2016-06-24" @default.
- W1992150318 creator A5003883349 @default.
- W1992150318 creator A5080454760 @default.
- W1992150318 creator A5088678512 @default.
- W1992150318 date "2013-12-13" @default.
- W1992150318 modified "2023-10-14" @default.
- W1992150318 title "Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow" @default.
- W1992150318 cites W1514578360 @default.
- W1992150318 cites W1964487615 @default.
- W1992150318 cites W1966569971 @default.
- W1992150318 cites W1976758797 @default.
- W1992150318 cites W1987503919 @default.
- W1992150318 cites W1989924061 @default.
- W1992150318 cites W1999631326 @default.
- W1992150318 cites W2001128897 @default.
- W1992150318 cites W2016239520 @default.
- W1992150318 cites W2023151315 @default.
- W1992150318 cites W2027147475 @default.
- W1992150318 cites W2029065214 @default.
- W1992150318 cites W2031406888 @default.
- W1992150318 cites W2032325704 @default.
- W1992150318 cites W2040259398 @default.
- W1992150318 cites W2062678343 @default.
- W1992150318 cites W2065710952 @default.
- W1992150318 cites W2066629408 @default.
- W1992150318 cites W2074128568 @default.
- W1992150318 cites W2075030773 @default.
- W1992150318 cites W2080090213 @default.
- W1992150318 cites W2100094388 @default.
- W1992150318 cites W2119950184 @default.
- W1992150318 cites W2156933711 @default.
- W1992150318 cites W2170400704 @default.
- W1992150318 cites W4230237964 @default.
- W1992150318 cites W4252832327 @default.
- W1992150318 doi "https://doi.org/10.1017/jfm.2013.599" @default.
- W1992150318 hasPublicationYear "2013" @default.
- W1992150318 type Work @default.
- W1992150318 sameAs 1992150318 @default.
- W1992150318 citedByCount "57" @default.
- W1992150318 countsByYear W19921503182015 @default.
- W1992150318 countsByYear W19921503182016 @default.
- W1992150318 countsByYear W19921503182017 @default.
- W1992150318 countsByYear W19921503182018 @default.
- W1992150318 countsByYear W19921503182019 @default.
- W1992150318 countsByYear W19921503182020 @default.
- W1992150318 countsByYear W19921503182021 @default.
- W1992150318 countsByYear W19921503182022 @default.
- W1992150318 countsByYear W19921503182023 @default.
- W1992150318 crossrefType "journal-article" @default.
- W1992150318 hasAuthorship W1992150318A5003883349 @default.
- W1992150318 hasAuthorship W1992150318A5080454760 @default.
- W1992150318 hasAuthorship W1992150318A5088678512 @default.
- W1992150318 hasConcept C10238366 @default.
- W1992150318 hasConcept C110407247 @default.
- W1992150318 hasConcept C121332964 @default.
- W1992150318 hasConcept C135768490 @default.
- W1992150318 hasConcept C182748727 @default.
- W1992150318 hasConcept C19191322 @default.
- W1992150318 hasConcept C196558001 @default.
- W1992150318 hasConcept C24692054 @default.
- W1992150318 hasConcept C38349280 @default.
- W1992150318 hasConcept C57879066 @default.
- W1992150318 hasConcept C74650414 @default.
- W1992150318 hasConceptScore W1992150318C10238366 @default.
- W1992150318 hasConceptScore W1992150318C110407247 @default.
- W1992150318 hasConceptScore W1992150318C121332964 @default.
- W1992150318 hasConceptScore W1992150318C135768490 @default.
- W1992150318 hasConceptScore W1992150318C182748727 @default.
- W1992150318 hasConceptScore W1992150318C19191322 @default.
- W1992150318 hasConceptScore W1992150318C196558001 @default.
- W1992150318 hasConceptScore W1992150318C24692054 @default.
- W1992150318 hasConceptScore W1992150318C38349280 @default.
- W1992150318 hasConceptScore W1992150318C57879066 @default.
- W1992150318 hasConceptScore W1992150318C74650414 @default.
- W1992150318 hasLocation W19921503181 @default.
- W1992150318 hasOpenAccess W1992150318 @default.
- W1992150318 hasPrimaryLocation W19921503181 @default.
- W1992150318 hasRelatedWork W2041251786 @default.
- W1992150318 hasRelatedWork W2073924650 @default.
- W1992150318 hasRelatedWork W2089964919 @default.
- W1992150318 hasRelatedWork W2165340818 @default.
- W1992150318 hasRelatedWork W2285922472 @default.
- W1992150318 hasRelatedWork W2366076529 @default.
- W1992150318 hasRelatedWork W2740959400 @default.
- W1992150318 hasRelatedWork W2981699474 @default.
- W1992150318 hasRelatedWork W4294732722 @default.
- W1992150318 hasRelatedWork W4379743905 @default.
- W1992150318 hasVolume "738" @default.
- W1992150318 isParatext "false" @default.
- W1992150318 isRetracted "false" @default.
- W1992150318 magId "1992150318" @default.
- W1992150318 workType "article" @default.