Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992196261> ?p ?o ?g. }
- W1992196261 endingPage "2255" @default.
- W1992196261 startingPage "2237" @default.
- W1992196261 abstract "Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with δD values from −64‰ to −25‰. All samples are enriched in water relative to fresh basalts. The δD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with δ13C values from −14.9‰ to −26.6‰. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with δ13C = −4.5‰ and (2) an organic compound with δ13C = −26.6‰. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when “fresh” oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer–Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ∼ −4.7‰, similar to the δ13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 × 1012 molC/yr." @default.
- W1992196261 created "2016-06-24" @default.
- W1992196261 creator A5010140462 @default.
- W1992196261 creator A5010665422 @default.
- W1992196261 creator A5027034064 @default.
- W1992196261 creator A5065666052 @default.
- W1992196261 creator A5084032331 @default.
- W1992196261 date "2011-05-01" @default.
- W1992196261 modified "2023-10-03" @default.
- W1992196261 title "Insights into C and H storage in the altered oceanic crust: Results from ODP/IODP Hole 1256D" @default.
- W1992196261 cites W1494328136 @default.
- W1992196261 cites W1518370280 @default.
- W1992196261 cites W1576070671 @default.
- W1992196261 cites W1589497198 @default.
- W1992196261 cites W1592718458 @default.
- W1992196261 cites W1594208152 @default.
- W1992196261 cites W1602180286 @default.
- W1992196261 cites W1631925744 @default.
- W1992196261 cites W1650216759 @default.
- W1992196261 cites W1746435573 @default.
- W1992196261 cites W1942724064 @default.
- W1992196261 cites W1965382558 @default.
- W1992196261 cites W1967289731 @default.
- W1992196261 cites W1973000383 @default.
- W1992196261 cites W1974080879 @default.
- W1992196261 cites W1976573212 @default.
- W1992196261 cites W1978655405 @default.
- W1992196261 cites W1978804102 @default.
- W1992196261 cites W1979397758 @default.
- W1992196261 cites W1983714152 @default.
- W1992196261 cites W1983891732 @default.
- W1992196261 cites W1984424164 @default.
- W1992196261 cites W1984433213 @default.
- W1992196261 cites W1985775033 @default.
- W1992196261 cites W1993057797 @default.
- W1992196261 cites W1993561487 @default.
- W1992196261 cites W1993567329 @default.
- W1992196261 cites W1996742086 @default.
- W1992196261 cites W1998707404 @default.
- W1992196261 cites W2001683255 @default.
- W1992196261 cites W2004514418 @default.
- W1992196261 cites W2008281306 @default.
- W1992196261 cites W2011488524 @default.
- W1992196261 cites W2013138018 @default.
- W1992196261 cites W2014502918 @default.
- W1992196261 cites W2022329511 @default.
- W1992196261 cites W2023289187 @default.
- W1992196261 cites W2024672159 @default.
- W1992196261 cites W2025242466 @default.
- W1992196261 cites W2039066042 @default.
- W1992196261 cites W2039322458 @default.
- W1992196261 cites W2039696499 @default.
- W1992196261 cites W2043493255 @default.
- W1992196261 cites W2044097903 @default.
- W1992196261 cites W2048839862 @default.
- W1992196261 cites W2049426455 @default.
- W1992196261 cites W2049474990 @default.
- W1992196261 cites W2050426592 @default.
- W1992196261 cites W2055071069 @default.
- W1992196261 cites W2055430986 @default.
- W1992196261 cites W2059724668 @default.
- W1992196261 cites W2066423423 @default.
- W1992196261 cites W2073550547 @default.
- W1992196261 cites W2076520062 @default.
- W1992196261 cites W2076626505 @default.
- W1992196261 cites W2078105038 @default.
- W1992196261 cites W2078402054 @default.
- W1992196261 cites W2080556644 @default.
- W1992196261 cites W2081071023 @default.
- W1992196261 cites W2082498323 @default.
- W1992196261 cites W2082645871 @default.
- W1992196261 cites W2084132612 @default.
- W1992196261 cites W2087769129 @default.
- W1992196261 cites W2088305435 @default.
- W1992196261 cites W2089239248 @default.
- W1992196261 cites W2089758868 @default.
- W1992196261 cites W2090937762 @default.
- W1992196261 cites W2093917934 @default.
- W1992196261 cites W2096682995 @default.
- W1992196261 cites W2111566878 @default.
- W1992196261 cites W2118168812 @default.
- W1992196261 cites W2119428204 @default.
- W1992196261 cites W2126455993 @default.
- W1992196261 cites W2131311628 @default.
- W1992196261 cites W2135827812 @default.
- W1992196261 cites W2141992662 @default.
- W1992196261 cites W2143045284 @default.
- W1992196261 cites W2163042763 @default.
- W1992196261 cites W2165032343 @default.
- W1992196261 cites W2481106544 @default.
- W1992196261 cites W2487337221 @default.
- W1992196261 cites W2503925100 @default.
- W1992196261 cites W2615106566 @default.
- W1992196261 cites W3000908444 @default.
- W1992196261 cites W422539398 @default.
- W1992196261 cites W4240066319 @default.
- W1992196261 doi "https://doi.org/10.1016/j.gca.2010.11.027" @default.
- W1992196261 hasPublicationYear "2011" @default.