Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992248203> ?p ?o ?g. }
- W1992248203 endingPage "7853" @default.
- W1992248203 startingPage "7840" @default.
- W1992248203 abstract "We present an analytical equation of state based on statistical-mechanical perturbation theory for hard spheres, using the Weeks–Chandler–Andersen decomposition of the potential and the Carnahan–Starling formula for the pair distribution function at contact, g(d+), but with a different algorithm for calculating the effective hard-sphere diameter. The second virial coefficient is calculated exactly. Two temperature-dependent quantities in addition to the second virial coefficient arise, an effective hard-sphere diameter or van der Waals covolume, and a scaling factor for g(d+). Both can be calculated by simple quadrature from the intermolecular potential. If the potential is not known, they can be determined from the experimental second virial coefficient because they are insensitive to the shape of the potential. Two scaling constants suffice for this purpose, the Boyle temperature and the Boyle volume. These could also be determined from analysis of a number of properties other than the second virial coefficient. Thus the second virial coefficient serves to predict the entire equation of state in terms of two scaling parameters, and hence a number of other thermodynamic properties including the Helmholtz free energy, the internal energy, the vapor pressure curve and the orthobaric liquid and vapor densities, and the Joule–Thomson inversion curve, among others. Since it is effectively a two-parameter equation, the equation of state implies a principle of corresponding states. Agreement with computer-simulated results for a Lennard-Jones (12,6) fluid, and with experimental p–v–T data on the noble gases (except He) is quite good, extending up to the limit of available data, which is ten times the critical density for the (12,6) fluid and about three times the critical density for the noble gases. As expected for a mean-field theory, the prediction of the critical constants is only fair, and of the critical exponents is incorrect. Limited testing on the polyatomic gases CH4, N2, and CO2 suggests that the results for spherical molecules (CH4) may be as good as for the noble gases, nearly as good for slightly nonspherical molecules (N2), but poor at high densities for nonspherical molecules (CO2). In all cases, however, the results are accurate up to the critical density. Except for the eight-parameter empirical Benedict–Webb–Rubin equation, this appears to be the most accurate analytical equation of state proposed to date." @default.
- W1992248203 created "2016-06-24" @default.
- W1992248203 creator A5036680742 @default.
- W1992248203 creator A5060855819 @default.
- W1992248203 date "1989-12-15" @default.
- W1992248203 modified "2023-09-23" @default.
- W1992248203 title "Statistical‐mechanical theory of a new analytical equation of state" @default.
- W1992248203 cites W1651894557 @default.
- W1992248203 cites W1845618662 @default.
- W1992248203 cites W1980997101 @default.
- W1992248203 cites W1981796769 @default.
- W1992248203 cites W1992623294 @default.
- W1992248203 cites W1993827553 @default.
- W1992248203 cites W1995301412 @default.
- W1992248203 cites W1996275803 @default.
- W1992248203 cites W2000612288 @default.
- W1992248203 cites W2000663409 @default.
- W1992248203 cites W2004486737 @default.
- W1992248203 cites W2010652601 @default.
- W1992248203 cites W2018175666 @default.
- W1992248203 cites W2022309251 @default.
- W1992248203 cites W2029536691 @default.
- W1992248203 cites W2038423414 @default.
- W1992248203 cites W2040682323 @default.
- W1992248203 cites W2046945116 @default.
- W1992248203 cites W2053328977 @default.
- W1992248203 cites W2056266527 @default.
- W1992248203 cites W2059815927 @default.
- W1992248203 cites W2061603217 @default.
- W1992248203 cites W2065390459 @default.
- W1992248203 cites W2070789313 @default.
- W1992248203 cites W2071066651 @default.
- W1992248203 cites W2075875368 @default.
- W1992248203 cites W2084041890 @default.
- W1992248203 cites W2089125937 @default.
- W1992248203 cites W2140494151 @default.
- W1992248203 cites W2314602814 @default.
- W1992248203 cites W2316040039 @default.
- W1992248203 cites W2317980692 @default.
- W1992248203 cites W2322250088 @default.
- W1992248203 cites W2323178299 @default.
- W1992248203 cites W2382810136 @default.
- W1992248203 cites W2800998410 @default.
- W1992248203 cites W4231027225 @default.
- W1992248203 doi "https://doi.org/10.1063/1.457252" @default.
- W1992248203 hasPublicationYear "1989" @default.
- W1992248203 type Work @default.
- W1992248203 sameAs 1992248203 @default.
- W1992248203 citedByCount "202" @default.
- W1992248203 countsByYear W19922482032012 @default.
- W1992248203 countsByYear W19922482032013 @default.
- W1992248203 countsByYear W19922482032014 @default.
- W1992248203 countsByYear W19922482032015 @default.
- W1992248203 countsByYear W19922482032016 @default.
- W1992248203 countsByYear W19922482032017 @default.
- W1992248203 countsByYear W19922482032018 @default.
- W1992248203 countsByYear W19922482032019 @default.
- W1992248203 countsByYear W19922482032020 @default.
- W1992248203 countsByYear W19922482032021 @default.
- W1992248203 countsByYear W19922482032022 @default.
- W1992248203 countsByYear W19922482032023 @default.
- W1992248203 crossrefType "journal-article" @default.
- W1992248203 hasAuthorship W1992248203A5036680742 @default.
- W1992248203 hasAuthorship W1992248203A5060855819 @default.
- W1992248203 hasConcept C121332964 @default.
- W1992248203 hasConcept C121864883 @default.
- W1992248203 hasConcept C126061179 @default.
- W1992248203 hasConcept C135508586 @default.
- W1992248203 hasConcept C142508316 @default.
- W1992248203 hasConcept C185592680 @default.
- W1992248203 hasConcept C189549420 @default.
- W1992248203 hasConcept C2524010 @default.
- W1992248203 hasConcept C27592594 @default.
- W1992248203 hasConcept C32909587 @default.
- W1992248203 hasConcept C33923547 @default.
- W1992248203 hasConcept C53810900 @default.
- W1992248203 hasConcept C59593255 @default.
- W1992248203 hasConcept C62520636 @default.
- W1992248203 hasConcept C65494353 @default.
- W1992248203 hasConcept C8244237 @default.
- W1992248203 hasConcept C93218973 @default.
- W1992248203 hasConcept C97355855 @default.
- W1992248203 hasConcept C98444146 @default.
- W1992248203 hasConcept C99844830 @default.
- W1992248203 hasConcept C99987037 @default.
- W1992248203 hasConceptScore W1992248203C121332964 @default.
- W1992248203 hasConceptScore W1992248203C121864883 @default.
- W1992248203 hasConceptScore W1992248203C126061179 @default.
- W1992248203 hasConceptScore W1992248203C135508586 @default.
- W1992248203 hasConceptScore W1992248203C142508316 @default.
- W1992248203 hasConceptScore W1992248203C185592680 @default.
- W1992248203 hasConceptScore W1992248203C189549420 @default.
- W1992248203 hasConceptScore W1992248203C2524010 @default.
- W1992248203 hasConceptScore W1992248203C27592594 @default.
- W1992248203 hasConceptScore W1992248203C32909587 @default.
- W1992248203 hasConceptScore W1992248203C33923547 @default.
- W1992248203 hasConceptScore W1992248203C53810900 @default.
- W1992248203 hasConceptScore W1992248203C59593255 @default.