Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992283489> ?p ?o ?g. }
- W1992283489 endingPage "84" @default.
- W1992283489 startingPage "69" @default.
- W1992283489 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 307:69-84 (2006) - doi:10.3354/meps307069 Mucus trap in coral reefs: formation and temporal evolution of particle aggregates caused by coral mucus Markus Huettel1,3,*, Christian Wild1,4, Sabine Gonelli2 1Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany2Davao del Norte State College, New Visayas, Panabo City, Davao del Norte, Philippines3Present address: Florida State University, Department of Oceanography, West Call Street, OSB517, Tallahassee,Florida 32306-4320, USA4Present address: UNESCO, Intergovernmental Oceanographic Commission, 1 rue Miollis, 75015 Paris, France *Email: mhuettel@ocean.fsu.edu ABSTRACT: Corals exude large volumes of nutrient-containing mucus when exposed to air during low spring tides, as a protective mechanism against desiccation and UV radiation. Currents and waves of the incoming flood detach the mucus from the corals, thereby increasing organic carbon and nutrient concentrations in the reef water. During transport into the reef lagoon, a large fraction of the mucus dissolves. Roller-table experiments demonstrated that this dissolved mucus leads to the formation of marine snow. The non-dissolving gel-like fraction of the mucus rapidly accumulates suspended particles from the flood water and forms in temporal sequence mucus strings, flocs, surface films, surface layers and thick mucus floats. In a platform reef in the Great Barrier Reef, Australia, we characterized each of these mucus phases and observed the exponential increase of algal and bacterial cells in the ageing mucus aggregates. Within 3 hours, the dry weight of the aggregates increased 35-fold, chlorophyll a 192-fold, bacteria cell density 546-fold, C 26-fold, and N 79-fold. After waves destroy the buoyant mucus floats, the mucus aggregates release enclosed gas bubbles and quickly sink to the lagoon sediments, where they are consumed by the benthic community. This releases aggregate-bound nutrients, which fuel benthic and planktonic production in the lagoon. During ebb tide, corals filter the lagoon water and close the recycling loop. We conclude that coral mucus enhances the filtration capacity of coral reefs and fuels reef benthos, thereby increasing the import of oceanic particles and enhancing recycling in the reef ecosystem. KEY WORDS: Mucus · Coral reefs · Nutrient recycling · Permeable sediment · Marine snow · TEP Full text in pdf format PreviousNextExport citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 307. Online publication date: January 24, 2006 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2006 Inter-Research." @default.
- W1992283489 created "2016-06-24" @default.
- W1992283489 creator A5032000165 @default.
- W1992283489 creator A5038864551 @default.
- W1992283489 creator A5044294804 @default.
- W1992283489 date "2006-01-24" @default.
- W1992283489 modified "2023-10-16" @default.
- W1992283489 title "Mucus trap in coral reefs: formation and temporal evolution of particle aggregates caused by coral mucus" @default.
- W1992283489 cites W1184053604 @default.
- W1992283489 cites W1491619236 @default.
- W1992283489 cites W1515985097 @default.
- W1992283489 cites W1531065141 @default.
- W1992283489 cites W1601407018 @default.
- W1992283489 cites W1639495293 @default.
- W1992283489 cites W1655111058 @default.
- W1992283489 cites W1964911564 @default.
- W1992283489 cites W1965474678 @default.
- W1992283489 cites W1966253810 @default.
- W1992283489 cites W1967489294 @default.
- W1992283489 cites W1968026621 @default.
- W1992283489 cites W1969163999 @default.
- W1992283489 cites W1976526268 @default.
- W1992283489 cites W1978096137 @default.
- W1992283489 cites W1978136464 @default.
- W1992283489 cites W1979481661 @default.
- W1992283489 cites W1982639257 @default.
- W1992283489 cites W1983424155 @default.
- W1992283489 cites W1996909119 @default.
- W1992283489 cites W1999291255 @default.
- W1992283489 cites W2015421073 @default.
- W1992283489 cites W2016969072 @default.
- W1992283489 cites W2021150762 @default.
- W1992283489 cites W2023299106 @default.
- W1992283489 cites W2027326094 @default.
- W1992283489 cites W2029280610 @default.
- W1992283489 cites W2030427413 @default.
- W1992283489 cites W2031214607 @default.
- W1992283489 cites W2031422900 @default.
- W1992283489 cites W2040980246 @default.
- W1992283489 cites W2042167420 @default.
- W1992283489 cites W2042236619 @default.
- W1992283489 cites W2058899665 @default.
- W1992283489 cites W2070583786 @default.
- W1992283489 cites W2075515327 @default.
- W1992283489 cites W2076625431 @default.
- W1992283489 cites W2078557271 @default.
- W1992283489 cites W2081155822 @default.
- W1992283489 cites W2085284999 @default.
- W1992283489 cites W2087153845 @default.
- W1992283489 cites W2088848726 @default.
- W1992283489 cites W2092213273 @default.
- W1992283489 cites W2093197507 @default.
- W1992283489 cites W2093686737 @default.
- W1992283489 cites W2100999514 @default.
- W1992283489 cites W2102112152 @default.
- W1992283489 cites W2105855632 @default.
- W1992283489 cites W2106360792 @default.
- W1992283489 cites W2111188813 @default.
- W1992283489 cites W2123759159 @default.
- W1992283489 cites W2128132220 @default.
- W1992283489 cites W2137507310 @default.
- W1992283489 cites W2141105850 @default.
- W1992283489 cites W2142085556 @default.
- W1992283489 cites W2142765693 @default.
- W1992283489 cites W2146840399 @default.
- W1992283489 cites W2151700983 @default.
- W1992283489 cites W2164104449 @default.
- W1992283489 cites W2165977497 @default.
- W1992283489 cites W2166927678 @default.
- W1992283489 cites W2169902378 @default.
- W1992283489 cites W2461676461 @default.
- W1992283489 cites W2464303936 @default.
- W1992283489 cites W2476006431 @default.
- W1992283489 cites W2510389931 @default.
- W1992283489 doi "https://doi.org/10.3354/meps307069" @default.
- W1992283489 hasPublicationYear "2006" @default.
- W1992283489 type Work @default.
- W1992283489 sameAs 1992283489 @default.
- W1992283489 citedByCount "74" @default.
- W1992283489 countsByYear W19922834892012 @default.
- W1992283489 countsByYear W19922834892013 @default.
- W1992283489 countsByYear W19922834892014 @default.
- W1992283489 countsByYear W19922834892015 @default.
- W1992283489 countsByYear W19922834892016 @default.
- W1992283489 countsByYear W19922834892017 @default.
- W1992283489 countsByYear W19922834892018 @default.
- W1992283489 countsByYear W19922834892019 @default.
- W1992283489 countsByYear W19922834892020 @default.
- W1992283489 countsByYear W19922834892021 @default.
- W1992283489 countsByYear W19922834892022 @default.
- W1992283489 countsByYear W19922834892023 @default.
- W1992283489 crossrefType "journal-article" @default.
- W1992283489 hasAuthorship W1992283489A5032000165 @default.
- W1992283489 hasAuthorship W1992283489A5038864551 @default.
- W1992283489 hasAuthorship W1992283489A5044294804 @default.
- W1992283489 hasBestOaLocation W19922834891 @default.
- W1992283489 hasConcept C111368507 @default.
- W1992283489 hasConcept C127313418 @default.