Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992285792> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W1992285792 endingPage "393" @default.
- W1992285792 startingPage "391" @default.
- W1992285792 abstract "This paper is a survey of results on chromatic polynomials of graphs which are generalizations of trees. In particular, chromatic polynomials of q-trees will be discussed. The smallest q-tree (q≥1) is the complete graph Kq on q vertices. A q-tree on n+1 vertices where n≥q, is obtained by adding a new vertex adjacent to each of q arbitrarily selected, mutually adjacent vertices in a q-tree on n vertices. Another generalization of trees is the n-gon-trees. The smallest n-gon-tree (n≥3) is the n-gon which is a cycle of n vertices. A n-gon-tree with k+1 n-gons is obtained from a n-gon-tree with k n-gons by adding a new n-gon which has exactly one edge in common with any n-gon of a n-gon-tree with kn-gons." @default.
- W1992285792 created "2016-06-24" @default.
- W1992285792 creator A5070181625 @default.
- W1992285792 date "1988-12-01" @default.
- W1992285792 modified "2023-10-14" @default.
- W1992285792 title "Chromatic polynomials of generalized trees" @default.
- W1992285792 cites W1592003035 @default.
- W1992285792 cites W1985792286 @default.
- W1992285792 cites W1995702405 @default.
- W1992285792 cites W2023472511 @default.
- W1992285792 cites W2050246635 @default.
- W1992285792 cites W245060393 @default.
- W1992285792 doi "https://doi.org/10.1016/0012-365x(88)90231-2" @default.
- W1992285792 hasPublicationYear "1988" @default.
- W1992285792 type Work @default.
- W1992285792 sameAs 1992285792 @default.
- W1992285792 citedByCount "10" @default.
- W1992285792 countsByYear W19922857922015 @default.
- W1992285792 countsByYear W19922857922016 @default.
- W1992285792 countsByYear W19922857922017 @default.
- W1992285792 crossrefType "journal-article" @default.
- W1992285792 hasAuthorship W1992285792A5070181625 @default.
- W1992285792 hasBestOaLocation W19922857921 @default.
- W1992285792 hasConcept C113174947 @default.
- W1992285792 hasConcept C114614502 @default.
- W1992285792 hasConcept C118615104 @default.
- W1992285792 hasConcept C132525143 @default.
- W1992285792 hasConcept C33923547 @default.
- W1992285792 hasConcept C80899671 @default.
- W1992285792 hasConceptScore W1992285792C113174947 @default.
- W1992285792 hasConceptScore W1992285792C114614502 @default.
- W1992285792 hasConceptScore W1992285792C118615104 @default.
- W1992285792 hasConceptScore W1992285792C132525143 @default.
- W1992285792 hasConceptScore W1992285792C33923547 @default.
- W1992285792 hasConceptScore W1992285792C80899671 @default.
- W1992285792 hasIssue "1-3" @default.
- W1992285792 hasLocation W19922857921 @default.
- W1992285792 hasOpenAccess W1992285792 @default.
- W1992285792 hasPrimaryLocation W19922857921 @default.
- W1992285792 hasRelatedWork W1719252778 @default.
- W1992285792 hasRelatedWork W2008276241 @default.
- W1992285792 hasRelatedWork W2031098440 @default.
- W1992285792 hasRelatedWork W2034217845 @default.
- W1992285792 hasRelatedWork W2169820283 @default.
- W1992285792 hasRelatedWork W2362497073 @default.
- W1992285792 hasRelatedWork W2374778222 @default.
- W1992285792 hasRelatedWork W2555545330 @default.
- W1992285792 hasRelatedWork W4307385446 @default.
- W1992285792 hasRelatedWork W922283457 @default.
- W1992285792 hasVolume "72" @default.
- W1992285792 isParatext "false" @default.
- W1992285792 isRetracted "false" @default.
- W1992285792 magId "1992285792" @default.
- W1992285792 workType "article" @default.