Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992331713> ?p ?o ?g. }
- W1992331713 endingPage "1925" @default.
- W1992331713 startingPage "1915" @default.
- W1992331713 abstract "Contraction of striated muscle is tightly regulated by the release and sequestration of calcium within myocytes. At the molecular level, calcium modulates myosin's access to the thin filament. Once bound, myosin is hypothesized to potentiate the binding of further myosins. Here, we directly image single molecules of myosin binding to and activating thin filaments. Using this approach, the cooperative binding of myosin along thin filaments has been quantified. We have found that two myosin heads are required to laterally activate a regulatory unit of thin filament. The regulatory unit is found to be capable of accommodating 11 additional myosins. Three thin filament activation states possessing differential myosin binding capacities are also visible. To describe this system, we have formulated a simple chemical kinetic model of cooperative activation that holds across a wide range of solution conditions. The stochastic nature of activation is strongly highlighted by data obtained in sub-optimal activation conditions where the generation of activation waves and their catastrophic collapse can be observed. This suggests that the thin filament has the potential to be turned fully on or off in a binary fashion.BackgroundHow calcium regulates thin filament activation is uncertain.ResultsSingle molecule imaging is used to report on thin filament activation across relevant solution conditions.ConclusionTwo myosin heads are required to activate a thin filament, which occurs as three states, and myosin binding opens up 11 sites for subsequent binders.SignificanceThis first direct visualization of cooperativity in action exposes how complex systems function. Contraction of striated muscle is tightly regulated by the release and sequestration of calcium within myocytes. At the molecular level, calcium modulates myosin's access to the thin filament. Once bound, myosin is hypothesized to potentiate the binding of further myosins. Here, we directly image single molecules of myosin binding to and activating thin filaments. Using this approach, the cooperative binding of myosin along thin filaments has been quantified. We have found that two myosin heads are required to laterally activate a regulatory unit of thin filament. The regulatory unit is found to be capable of accommodating 11 additional myosins. Three thin filament activation states possessing differential myosin binding capacities are also visible. To describe this system, we have formulated a simple chemical kinetic model of cooperative activation that holds across a wide range of solution conditions. The stochastic nature of activation is strongly highlighted by data obtained in sub-optimal activation conditions where the generation of activation waves and their catastrophic collapse can be observed. This suggests that the thin filament has the potential to be turned fully on or off in a binary fashion. How calcium regulates thin filament activation is uncertain. Single molecule imaging is used to report on thin filament activation across relevant solution conditions. Two myosin heads are required to activate a thin filament, which occurs as three states, and myosin binding opens up 11 sites for subsequent binders." @default.
- W1992331713 created "2016-06-24" @default.
- W1992331713 creator A5039484661 @default.
- W1992331713 creator A5065259649 @default.
- W1992331713 creator A5075473900 @default.
- W1992331713 date "2015-01-01" @default.
- W1992331713 modified "2023-10-01" @default.
- W1992331713 title "Using Fluorescent Myosin to Directly Visualize Cooperative Activation of Thin Filaments*" @default.
- W1992331713 cites W1620274191 @default.
- W1992331713 cites W1901823973 @default.
- W1992331713 cites W1965999112 @default.
- W1992331713 cites W1975904377 @default.
- W1992331713 cites W1976435688 @default.
- W1992331713 cites W1982752211 @default.
- W1992331713 cites W1986038183 @default.
- W1992331713 cites W1989461632 @default.
- W1992331713 cites W1992924616 @default.
- W1992331713 cites W1994125381 @default.
- W1992331713 cites W1995311028 @default.
- W1992331713 cites W1999457478 @default.
- W1992331713 cites W2003300699 @default.
- W1992331713 cites W2004910428 @default.
- W1992331713 cites W2024939172 @default.
- W1992331713 cites W2026145805 @default.
- W1992331713 cites W2036426310 @default.
- W1992331713 cites W2037030280 @default.
- W1992331713 cites W2038379218 @default.
- W1992331713 cites W2038936188 @default.
- W1992331713 cites W2039159449 @default.
- W1992331713 cites W2046919025 @default.
- W1992331713 cites W2049350695 @default.
- W1992331713 cites W2059158601 @default.
- W1992331713 cites W2062098294 @default.
- W1992331713 cites W2067633612 @default.
- W1992331713 cites W2068684226 @default.
- W1992331713 cites W2071230984 @default.
- W1992331713 cites W2074805570 @default.
- W1992331713 cites W2075174490 @default.
- W1992331713 cites W2091204518 @default.
- W1992331713 cites W2097892229 @default.
- W1992331713 cites W2105944799 @default.
- W1992331713 cites W2106998446 @default.
- W1992331713 cites W2108709757 @default.
- W1992331713 cites W2117601757 @default.
- W1992331713 cites W2139292873 @default.
- W1992331713 cites W2157189708 @default.
- W1992331713 cites W2171662222 @default.
- W1992331713 cites W2175328062 @default.
- W1992331713 doi "https://doi.org/10.1074/jbc.m114.609743" @default.
- W1992331713 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4303648" @default.
- W1992331713 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25429108" @default.
- W1992331713 hasPublicationYear "2015" @default.
- W1992331713 type Work @default.
- W1992331713 sameAs 1992331713 @default.
- W1992331713 citedByCount "47" @default.
- W1992331713 countsByYear W19923317132015 @default.
- W1992331713 countsByYear W19923317132016 @default.
- W1992331713 countsByYear W19923317132017 @default.
- W1992331713 countsByYear W19923317132018 @default.
- W1992331713 countsByYear W19923317132019 @default.
- W1992331713 countsByYear W19923317132020 @default.
- W1992331713 countsByYear W19923317132021 @default.
- W1992331713 countsByYear W19923317132022 @default.
- W1992331713 countsByYear W19923317132023 @default.
- W1992331713 crossrefType "journal-article" @default.
- W1992331713 hasAuthorship W1992331713A5039484661 @default.
- W1992331713 hasAuthorship W1992331713A5065259649 @default.
- W1992331713 hasAuthorship W1992331713A5075473900 @default.
- W1992331713 hasBestOaLocation W19923317131 @default.
- W1992331713 hasConcept C105702510 @default.
- W1992331713 hasConcept C12554922 @default.
- W1992331713 hasConcept C125705527 @default.
- W1992331713 hasConcept C14228908 @default.
- W1992331713 hasConcept C15954220 @default.
- W1992331713 hasConcept C166014724 @default.
- W1992331713 hasConcept C185592680 @default.
- W1992331713 hasConcept C2776050358 @default.
- W1992331713 hasConcept C55493867 @default.
- W1992331713 hasConcept C6997183 @default.
- W1992331713 hasConcept C8035138 @default.
- W1992331713 hasConcept C86803240 @default.
- W1992331713 hasConceptScore W1992331713C105702510 @default.
- W1992331713 hasConceptScore W1992331713C12554922 @default.
- W1992331713 hasConceptScore W1992331713C125705527 @default.
- W1992331713 hasConceptScore W1992331713C14228908 @default.
- W1992331713 hasConceptScore W1992331713C15954220 @default.
- W1992331713 hasConceptScore W1992331713C166014724 @default.
- W1992331713 hasConceptScore W1992331713C185592680 @default.
- W1992331713 hasConceptScore W1992331713C2776050358 @default.
- W1992331713 hasConceptScore W1992331713C55493867 @default.
- W1992331713 hasConceptScore W1992331713C6997183 @default.
- W1992331713 hasConceptScore W1992331713C8035138 @default.
- W1992331713 hasConceptScore W1992331713C86803240 @default.
- W1992331713 hasIssue "4" @default.
- W1992331713 hasLocation W19923317131 @default.
- W1992331713 hasLocation W19923317132 @default.
- W1992331713 hasLocation W19923317133 @default.
- W1992331713 hasOpenAccess W1992331713 @default.