Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992432345> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1992432345 abstract "An efficient method for human point cloud classification to semantic parts is presented. Using multiview frames, the 3D point cloud is extracted by 3D reconstruction and structure from motion methods. Bundle adjustment method is used for obtaining camera position and 3D point cloud by minimizing the reprojection error. For semantically classifying this point cloud to human limbs the conditional random field (CRF) and the mean field approximation are used. For reducing computational complexity in message passing stage (because of a huge number of nodes related to 3d point cloud), the over-segmentation method and the voxel cloud connectivity segmentation (VCCS) that voxelisizes the 3D point cloud to the over segmented parts are used. Here, we use the fully connected CRF graph on voxels instead of single point cloud points. The pair wise potentials for this CRF are combinations of Gaussian kernels of normal, positions, and colors. Gaussian kernels are appearance, shape, smoothness and Geodesic distance. Appearance kernel is inspired by the observation that nearby pixels with similar color are likely to be in the same class. The smoothness kernel removes small isolated regions. The shape kernel is a Gaussian kernel of normal differences. The Geodesic kernel is shortest path with Dijkstra algorithm between meshes. The inference function is a weighted combination of Gaussians. The unary potentials are prior probability for each limb that have the related label. The 6D pose invariant features such as FFPH for obtaining the discriminative features in whole body parts are used for unary potentials in CRF model. The experimental results show the efficiency of the proposed method." @default.
- W1992432345 created "2016-06-24" @default.
- W1992432345 creator A5012933659 @default.
- W1992432345 creator A5021847375 @default.
- W1992432345 creator A5035482059 @default.
- W1992432345 creator A5037904553 @default.
- W1992432345 creator A5055917708 @default.
- W1992432345 date "2014-05-01" @default.
- W1992432345 modified "2023-09-26" @default.
- W1992432345 title "Multiview 3D reconstruction and human point cloud classification" @default.
- W1992432345 cites W1607085150 @default.
- W1992432345 cites W1821570920 @default.
- W1992432345 cites W2058586075 @default.
- W1992432345 cites W2074658631 @default.
- W1992432345 cites W2107733398 @default.
- W1992432345 cites W2109635530 @default.
- W1992432345 cites W2114701396 @default.
- W1992432345 cites W2116502739 @default.
- W1992432345 cites W2124217265 @default.
- W1992432345 cites W2135249503 @default.
- W1992432345 cites W2137052580 @default.
- W1992432345 cites W2537262416 @default.
- W1992432345 cites W4234143236 @default.
- W1992432345 cites W4248437541 @default.
- W1992432345 doi "https://doi.org/10.1109/iraniancee.2014.6999703" @default.
- W1992432345 hasPublicationYear "2014" @default.
- W1992432345 type Work @default.
- W1992432345 sameAs 1992432345 @default.
- W1992432345 citedByCount "1" @default.
- W1992432345 countsByYear W19924323452020 @default.
- W1992432345 crossrefType "proceedings-article" @default.
- W1992432345 hasAuthorship W1992432345A5012933659 @default.
- W1992432345 hasAuthorship W1992432345A5021847375 @default.
- W1992432345 hasAuthorship W1992432345A5035482059 @default.
- W1992432345 hasAuthorship W1992432345A5037904553 @default.
- W1992432345 hasAuthorship W1992432345A5055917708 @default.
- W1992432345 hasConcept C11413529 @default.
- W1992432345 hasConcept C114614502 @default.
- W1992432345 hasConcept C124504099 @default.
- W1992432345 hasConcept C131979681 @default.
- W1992432345 hasConcept C152565575 @default.
- W1992432345 hasConcept C153180895 @default.
- W1992432345 hasConcept C154945302 @default.
- W1992432345 hasConcept C165818556 @default.
- W1992432345 hasConcept C2524010 @default.
- W1992432345 hasConcept C31972630 @default.
- W1992432345 hasConcept C33923547 @default.
- W1992432345 hasConcept C41008148 @default.
- W1992432345 hasConcept C74193536 @default.
- W1992432345 hasConcept C89600930 @default.
- W1992432345 hasConceptScore W1992432345C11413529 @default.
- W1992432345 hasConceptScore W1992432345C114614502 @default.
- W1992432345 hasConceptScore W1992432345C124504099 @default.
- W1992432345 hasConceptScore W1992432345C131979681 @default.
- W1992432345 hasConceptScore W1992432345C152565575 @default.
- W1992432345 hasConceptScore W1992432345C153180895 @default.
- W1992432345 hasConceptScore W1992432345C154945302 @default.
- W1992432345 hasConceptScore W1992432345C165818556 @default.
- W1992432345 hasConceptScore W1992432345C2524010 @default.
- W1992432345 hasConceptScore W1992432345C31972630 @default.
- W1992432345 hasConceptScore W1992432345C33923547 @default.
- W1992432345 hasConceptScore W1992432345C41008148 @default.
- W1992432345 hasConceptScore W1992432345C74193536 @default.
- W1992432345 hasConceptScore W1992432345C89600930 @default.
- W1992432345 hasLocation W19924323451 @default.
- W1992432345 hasOpenAccess W1992432345 @default.
- W1992432345 hasPrimaryLocation W19924323451 @default.
- W1992432345 hasRelatedWork W1669643531 @default.
- W1992432345 hasRelatedWork W2005437358 @default.
- W1992432345 hasRelatedWork W2008656436 @default.
- W1992432345 hasRelatedWork W2023558673 @default.
- W1992432345 hasRelatedWork W2039154422 @default.
- W1992432345 hasRelatedWork W2110230079 @default.
- W1992432345 hasRelatedWork W2134924024 @default.
- W1992432345 hasRelatedWork W2517104666 @default.
- W1992432345 hasRelatedWork W2979718872 @default.
- W1992432345 hasRelatedWork W3158534694 @default.
- W1992432345 isParatext "false" @default.
- W1992432345 isRetracted "false" @default.
- W1992432345 magId "1992432345" @default.
- W1992432345 workType "article" @default.