Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992510557> ?p ?o ?g. }
- W1992510557 endingPage "112" @default.
- W1992510557 startingPage "97" @default.
- W1992510557 abstract "Remote sensing of ocean color is a powerful tool for monitoring phytoplankton in the ocean with a high spatial and temporal resolution. Several methods were developed in the past years for detecting phytoplankton functional types from satellite observations. In this paper, we present an automatic classification method based on a neural network clustering algorithm in order to classify the anomalies of water leaving radiance spectra (Ra), introduced in the PHYSAT method by Alvain et al. (2005), and analyze their variability at the global scale. The use of an unsupervised classification aims at improving the characterization of the spectral variability of Ra in terms of shape and amplitude as well as the expansion of its potential use to larger in situ datasets for global phytoplankton remote sensing. The Self-Organizing Map algorithm (SOM, Kohonen, 1984) aggregates similar spectra into a reduced set of pertinent groups, allowing the characterization of the Ra variability, which is known to be linked with phytoplankton community composition (Alvain et al., 2012). Based on the same sample of Ra spectra, a comparison between the previous version of PHYSAT (Alvain et al., 2005, 2008) and the new one using SOM shows that it is now possible to take into consideration all the types of spectra. This was not possible with the previous approach, based on thresholds, defined in order to avoid overlaps between the spectral signatures of each phytoplankton group. The SOM-based method is relevant for characterizing a wide variety of Ra spectra through its ability to handle large amounts of data, in addition to its statistical reliability and processing speed compared to the previous PHYSAT. The former approach might have introduced potential biases and thus, its extension to larger databases was very restricted. This is not the case with the new statistical design presented in this work. In the second step, some new Ra spectra have been related to phytoplankton groups using collocated field pigment inventories from a large in situ database. Phytoplankton groups were identified based on biomarker pigment ratio thresholds taken from the literature. SOM was then applied to the global daily SeaWiFS (Sea-viewing Wide Field-of-view Sensor) imagery archive between 1997 and 2010. Global distributions of major phytoplankton groups were analyzed and validated against in situ data. Thanks to its ability to capture a wide range of spectra and to manage a larger in situ pigment dataset, the neural network tool allows to classify a much higher number of pixels (2 times more) than the previous PHYSAT method for the five phytoplankton groups taken into account in this study (Synechococcus-like-cyanobacteria, diatoms, Prochlorococcus, Nanoeucaryotes and Phaeocystis-like). In addition, different Ra spectral signatures have been associated to diatoms. These signatures are located in various environments where the inherent optical properties affecting the Ra spectra are likely to be significantly different. Local phenomena such as diatom blooms in the upwelling regions or during climatic events (i.e. La Niña) are more clearly visible with the new method." @default.
- W1992510557 created "2016-06-24" @default.
- W1992510557 creator A5002162139 @default.
- W1992510557 creator A5004228530 @default.
- W1992510557 creator A5052874708 @default.
- W1992510557 creator A5059233381 @default.
- W1992510557 creator A5067098887 @default.
- W1992510557 date "2014-04-01" @default.
- W1992510557 modified "2023-10-13" @default.
- W1992510557 title "Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: Application to the detection of phytoplankton groups in open ocean waters" @default.
- W1992510557 cites W1649447126 @default.
- W1992510557 cites W1965508664 @default.
- W1992510557 cites W1966999997 @default.
- W1992510557 cites W1967710441 @default.
- W1992510557 cites W1978490196 @default.
- W1992510557 cites W1979058049 @default.
- W1992510557 cites W1980051345 @default.
- W1992510557 cites W1981641355 @default.
- W1992510557 cites W1983176515 @default.
- W1992510557 cites W1984006825 @default.
- W1992510557 cites W1985634656 @default.
- W1992510557 cites W1989944407 @default.
- W1992510557 cites W1994383796 @default.
- W1992510557 cites W1996776815 @default.
- W1992510557 cites W1999111593 @default.
- W1992510557 cites W1999308740 @default.
- W1992510557 cites W1999371408 @default.
- W1992510557 cites W2000478837 @default.
- W1992510557 cites W2014306841 @default.
- W1992510557 cites W2016417694 @default.
- W1992510557 cites W2030120338 @default.
- W1992510557 cites W2030692255 @default.
- W1992510557 cites W2033996837 @default.
- W1992510557 cites W2037585145 @default.
- W1992510557 cites W2038720636 @default.
- W1992510557 cites W2040460517 @default.
- W1992510557 cites W2040649777 @default.
- W1992510557 cites W2045191240 @default.
- W1992510557 cites W2047742402 @default.
- W1992510557 cites W2048826069 @default.
- W1992510557 cites W2058053742 @default.
- W1992510557 cites W2063983419 @default.
- W1992510557 cites W2074918798 @default.
- W1992510557 cites W2078162627 @default.
- W1992510557 cites W2078638627 @default.
- W1992510557 cites W2079177664 @default.
- W1992510557 cites W2079493774 @default.
- W1992510557 cites W2079810998 @default.
- W1992510557 cites W2081259556 @default.
- W1992510557 cites W2083520894 @default.
- W1992510557 cites W2085744275 @default.
- W1992510557 cites W2087568217 @default.
- W1992510557 cites W2088179132 @default.
- W1992510557 cites W2088665921 @default.
- W1992510557 cites W2095208069 @default.
- W1992510557 cites W2095283170 @default.
- W1992510557 cites W2097540878 @default.
- W1992510557 cites W2098166174 @default.
- W1992510557 cites W2098648711 @default.
- W1992510557 cites W2098968240 @default.
- W1992510557 cites W2100820351 @default.
- W1992510557 cites W2103348345 @default.
- W1992510557 cites W2106917300 @default.
- W1992510557 cites W2109050306 @default.
- W1992510557 cites W2115239597 @default.
- W1992510557 cites W2115359280 @default.
- W1992510557 cites W2120388004 @default.
- W1992510557 cites W2122147704 @default.
- W1992510557 cites W2123158776 @default.
- W1992510557 cites W2127482611 @default.
- W1992510557 cites W2139095875 @default.
- W1992510557 cites W2140091868 @default.
- W1992510557 cites W2141515878 @default.
- W1992510557 cites W2147258346 @default.
- W1992510557 cites W2154494747 @default.
- W1992510557 cites W2155075526 @default.
- W1992510557 cites W2161094517 @default.
- W1992510557 cites W2161474561 @default.
- W1992510557 doi "https://doi.org/10.1016/j.rse.2013.08.046" @default.
- W1992510557 hasPublicationYear "2014" @default.
- W1992510557 type Work @default.
- W1992510557 sameAs 1992510557 @default.
- W1992510557 citedByCount "47" @default.
- W1992510557 countsByYear W19925105572014 @default.
- W1992510557 countsByYear W19925105572015 @default.
- W1992510557 countsByYear W19925105572016 @default.
- W1992510557 countsByYear W19925105572017 @default.
- W1992510557 countsByYear W19925105572018 @default.
- W1992510557 countsByYear W19925105572019 @default.
- W1992510557 countsByYear W19925105572020 @default.
- W1992510557 countsByYear W19925105572021 @default.
- W1992510557 countsByYear W19925105572022 @default.
- W1992510557 countsByYear W19925105572023 @default.
- W1992510557 crossrefType "journal-article" @default.
- W1992510557 hasAuthorship W1992510557A5002162139 @default.
- W1992510557 hasAuthorship W1992510557A5004228530 @default.
- W1992510557 hasAuthorship W1992510557A5052874708 @default.
- W1992510557 hasAuthorship W1992510557A5059233381 @default.