Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992581896> ?p ?o ?g. }
- W1992581896 abstract "A key question in the analysis of an inverse problem is the quantification of the non-uniqueness of the solution. Non-uniqueness arises when properties of an earth model can be varied without significantly worsening the fit to observed data. In most geophysical inverse problems, subsurface properties are parameterized using a fixed number of unknowns, and non-uniqueness has been tackled with a Bayesian approach by determining a posterior probability distribution in the parameter space that combines ‘a priori’ information with information contained in the observed data. However, less consideration has been given to the question whether the data themselves can constrain the model complexity, that is the number of unknowns needed to fit the observations. Answering this question requires solving a trans-dimensional inverse problem, where the number of unknowns is an unknown itself. Recently, the Bayesian approach to parameter estimation has been extended to quantify the posterior probability of the model complexity (the number of model parameters) with a quantity called ‘evidence’. The evidence can be hard to estimate in a non-linear problem; a practical solution is to use a Monte Carlo sampling algorithm that samples models with different number of unknowns in proportion to their posterior probability. This study presents a method to solve in trans-dimensional fashion the non-linear inverse problem of inferring 1-D subsurface elastic properties from teleseismic receiver function data. The Earth parameterization consists of a variable number of horizontal layers, where little is assumed a priori about the elastic properties, the number of layers, and and their thicknesses. We developed a reversible jump Markov Chain Monte Carlo algorithm that draws samples from the posterior distribution of Earth models. The solution of the inverse problem is a posterior probability distribution of the number of layers, their thicknesses and the elastic properties as a function of depth. These posterior distributions quantify completely the non-uniqueness of the solution. We illustrate the algorithm by inverting synthetic and field measurements, and the results show that the data constrain the model complexity. In the synthetic example, the main features of the subsurface properties are recovered in the posterior probability distribution. The inversion results for actual measurements show a crustal structure that agrees with previous studies in both crustal thickness and presence of intracrustal low-velocity layers." @default.
- W1992581896 created "2016-06-24" @default.
- W1992581896 creator A5070929298 @default.
- W1992581896 creator A5080018804 @default.
- W1992581896 date "2010-03-01" @default.
- W1992581896 modified "2023-10-18" @default.
- W1992581896 title "Receiver function inversion by trans-dimensional Monte Carlo sampling" @default.
- W1992581896 cites W1603353793 @default.
- W1992581896 cites W1637801267 @default.
- W1992581896 cites W1639626886 @default.
- W1992581896 cites W1965588666 @default.
- W1992581896 cites W1972461438 @default.
- W1992581896 cites W1991624598 @default.
- W1992581896 cites W1997127425 @default.
- W1992581896 cites W2001820253 @default.
- W1992581896 cites W2018314772 @default.
- W1992581896 cites W2019171575 @default.
- W1992581896 cites W2025841258 @default.
- W1992581896 cites W2041989170 @default.
- W1992581896 cites W2047862134 @default.
- W1992581896 cites W2056760934 @default.
- W1992581896 cites W2058990353 @default.
- W1992581896 cites W2069624343 @default.
- W1992581896 cites W2070390902 @default.
- W1992581896 cites W2073581972 @default.
- W1992581896 cites W2082900052 @default.
- W1992581896 cites W2083266769 @default.
- W1992581896 cites W2085516284 @default.
- W1992581896 cites W2087770727 @default.
- W1992581896 cites W2091805296 @default.
- W1992581896 cites W2097690289 @default.
- W1992581896 cites W2098550720 @default.
- W1992581896 cites W2105792028 @default.
- W1992581896 cites W2106500186 @default.
- W1992581896 cites W2106706098 @default.
- W1992581896 cites W2108064160 @default.
- W1992581896 cites W2128064443 @default.
- W1992581896 cites W2128893304 @default.
- W1992581896 cites W2133477667 @default.
- W1992581896 cites W2138309709 @default.
- W1992581896 cites W2142828015 @default.
- W1992581896 cites W2144039391 @default.
- W1992581896 cites W2152415136 @default.
- W1992581896 cites W2153806527 @default.
- W1992581896 cites W2160221120 @default.
- W1992581896 cites W2162336303 @default.
- W1992581896 cites W2163247537 @default.
- W1992581896 cites W2164602066 @default.
- W1992581896 cites W2170462156 @default.
- W1992581896 cites W2170664103 @default.
- W1992581896 cites W2172039401 @default.
- W1992581896 doi "https://doi.org/10.1111/j.1365-246x.2010.04530.x" @default.
- W1992581896 hasPublicationYear "2010" @default.
- W1992581896 type Work @default.
- W1992581896 sameAs 1992581896 @default.
- W1992581896 citedByCount "56" @default.
- W1992581896 countsByYear W19925818962013 @default.
- W1992581896 countsByYear W19925818962014 @default.
- W1992581896 countsByYear W19925818962015 @default.
- W1992581896 countsByYear W19925818962016 @default.
- W1992581896 countsByYear W19925818962017 @default.
- W1992581896 countsByYear W19925818962018 @default.
- W1992581896 countsByYear W19925818962019 @default.
- W1992581896 countsByYear W19925818962020 @default.
- W1992581896 countsByYear W19925818962021 @default.
- W1992581896 countsByYear W19925818962022 @default.
- W1992581896 countsByYear W19925818962023 @default.
- W1992581896 crossrefType "journal-article" @default.
- W1992581896 hasAuthorship W1992581896A5070929298 @default.
- W1992581896 hasAuthorship W1992581896A5080018804 @default.
- W1992581896 hasBestOaLocation W19925818961 @default.
- W1992581896 hasConcept C105795698 @default.
- W1992581896 hasConcept C107673813 @default.
- W1992581896 hasConcept C109007969 @default.
- W1992581896 hasConcept C111472728 @default.
- W1992581896 hasConcept C11413529 @default.
- W1992581896 hasConcept C126255220 @default.
- W1992581896 hasConcept C127313418 @default.
- W1992581896 hasConcept C134306372 @default.
- W1992581896 hasConcept C135252773 @default.
- W1992581896 hasConcept C138885662 @default.
- W1992581896 hasConcept C14036430 @default.
- W1992581896 hasConcept C151730666 @default.
- W1992581896 hasConcept C165464430 @default.
- W1992581896 hasConcept C1893757 @default.
- W1992581896 hasConcept C19499675 @default.
- W1992581896 hasConcept C207467116 @default.
- W1992581896 hasConcept C2524010 @default.
- W1992581896 hasConcept C2777021972 @default.
- W1992581896 hasConcept C28826006 @default.
- W1992581896 hasConcept C33923547 @default.
- W1992581896 hasConcept C41008148 @default.
- W1992581896 hasConcept C57830394 @default.
- W1992581896 hasConcept C75553542 @default.
- W1992581896 hasConcept C78458016 @default.
- W1992581896 hasConcept C86803240 @default.
- W1992581896 hasConceptScore W1992581896C105795698 @default.
- W1992581896 hasConceptScore W1992581896C107673813 @default.
- W1992581896 hasConceptScore W1992581896C109007969 @default.
- W1992581896 hasConceptScore W1992581896C111472728 @default.