Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992605514> ?p ?o ?g. }
- W1992605514 endingPage "265" @default.
- W1992605514 startingPage "246" @default.
- W1992605514 abstract "AbstractLatent space models (LSM) for network data rely on the basic assumption that each node of the network has an unknown position in a D-dimensional Euclidean latent space: generally the smaller the distance between two nodes in the latent space, the greater their probability of being connected. In this article, we propose a variational inference approach to estimate the intractable posterior of the LSM. In many cases, different network views on the same set of nodes are available. It can therefore be useful to build a model able to jointly summarize the information given by all the network views. For this purpose, we introduce the latent space joint model (LSJM) that merges the information given by multiple network views assuming that the probability of a node being connected with other nodes in each network view is explained by a unique latent variable. This model is demonstrated on the analysis of two datasets: an excerpt of 50 girls from “Teenage Friends and Lifestyle Study” data at three time points and the Saccharomyces cerevisiae genetic and physical protein–protein interactions. Supplementary materials for this article are available online.Key Words: Latent space modelLatent variableSocial network analysisVariational methods ACKNOWLEDGMENTSThe authors acknowledge the anonymous reviewers for helpful comments. This work was supported by Science Foundation funded Clique Research Cluster [grant number 08/SRC/I1407] and Insight Research Centre [grant number SFI/12/RC/2289]. Isabella Gollini’s research was also partially supported by the Natural Environment Research Council [Consortium on Risk in the Environment: Diagnostics, Integration, Benchmarking, Learning and Elicitation (CREDIBLE); grant number NE/J017450/1].Additional informationNotes on contributorsIsabella GolliniIsabella Gollini is Lecturer in Statistics, Department of Economics, Mathematics and Statistics, Birkbeck, University of London, England (E-mail: i.gollini@bbk.ac.uk). Thomas Brendan Murphy is Professor, School of Mathematical Sciences, Complex & Adaptive Systems Laboratory and Insight Research Centre, University College Dublin, Ireland (E-mail: brendan.murphy@ucd.ie).Thomas Brendan MurphyIsabella Gollini is Lecturer in Statistics, Department of Economics, Mathematics and Statistics, Birkbeck, University of London, England (E-mail: i.gollini@bbk.ac.uk). Thomas Brendan Murphy is Professor, School of Mathematical Sciences, Complex & Adaptive Systems Laboratory and Insight Research Centre, University College Dublin, Ireland (E-mail: brendan.murphy@ucd.ie)." @default.
- W1992605514 created "2016-06-24" @default.
- W1992605514 creator A5006441026 @default.
- W1992605514 creator A5075932839 @default.
- W1992605514 date "2016-01-02" @default.
- W1992605514 modified "2023-10-02" @default.
- W1992605514 title "Joint Modeling of Multiple Network Views" @default.
- W1992605514 cites W1496451467 @default.
- W1992605514 cites W1516111018 @default.
- W1992605514 cites W1981500949 @default.
- W1992605514 cites W1996919757 @default.
- W1992605514 cites W2019536654 @default.
- W1992605514 cites W2020018100 @default.
- W1992605514 cites W2028217358 @default.
- W1992605514 cites W2032005951 @default.
- W1992605514 cites W2036084078 @default.
- W1992605514 cites W2039750798 @default.
- W1992605514 cites W2045358616 @default.
- W1992605514 cites W2066459332 @default.
- W1992605514 cites W2074617510 @default.
- W1992605514 cites W2075517844 @default.
- W1992605514 cites W2076736556 @default.
- W1992605514 cites W2095646393 @default.
- W1992605514 cites W2096091969 @default.
- W1992605514 cites W2102907934 @default.
- W1992605514 cites W2119043225 @default.
- W1992605514 cites W2138485466 @default.
- W1992605514 cites W2163485494 @default.
- W1992605514 cites W2915108429 @default.
- W1992605514 cites W4247343278 @default.
- W1992605514 doi "https://doi.org/10.1080/10618600.2014.978006" @default.
- W1992605514 hasPublicationYear "2016" @default.
- W1992605514 type Work @default.
- W1992605514 sameAs 1992605514 @default.
- W1992605514 citedByCount "74" @default.
- W1992605514 countsByYear W19926055142015 @default.
- W1992605514 countsByYear W19926055142016 @default.
- W1992605514 countsByYear W19926055142017 @default.
- W1992605514 countsByYear W19926055142018 @default.
- W1992605514 countsByYear W19926055142019 @default.
- W1992605514 countsByYear W19926055142020 @default.
- W1992605514 countsByYear W19926055142021 @default.
- W1992605514 countsByYear W19926055142022 @default.
- W1992605514 countsByYear W19926055142023 @default.
- W1992605514 crossrefType "journal-article" @default.
- W1992605514 hasAuthorship W1992605514A5006441026 @default.
- W1992605514 hasAuthorship W1992605514A5075932839 @default.
- W1992605514 hasBestOaLocation W19926055142 @default.
- W1992605514 hasConcept C104122410 @default.
- W1992605514 hasConcept C114614502 @default.
- W1992605514 hasConcept C119857082 @default.
- W1992605514 hasConcept C124101348 @default.
- W1992605514 hasConcept C127413603 @default.
- W1992605514 hasConcept C154945302 @default.
- W1992605514 hasConcept C177264268 @default.
- W1992605514 hasConcept C199360897 @default.
- W1992605514 hasConcept C2776214188 @default.
- W1992605514 hasConcept C2777035058 @default.
- W1992605514 hasConcept C33923547 @default.
- W1992605514 hasConcept C41008148 @default.
- W1992605514 hasConcept C51167844 @default.
- W1992605514 hasConcept C62611344 @default.
- W1992605514 hasConcept C65965080 @default.
- W1992605514 hasConcept C66938386 @default.
- W1992605514 hasConcept C70727504 @default.
- W1992605514 hasConcept C80444323 @default.
- W1992605514 hasConceptScore W1992605514C104122410 @default.
- W1992605514 hasConceptScore W1992605514C114614502 @default.
- W1992605514 hasConceptScore W1992605514C119857082 @default.
- W1992605514 hasConceptScore W1992605514C124101348 @default.
- W1992605514 hasConceptScore W1992605514C127413603 @default.
- W1992605514 hasConceptScore W1992605514C154945302 @default.
- W1992605514 hasConceptScore W1992605514C177264268 @default.
- W1992605514 hasConceptScore W1992605514C199360897 @default.
- W1992605514 hasConceptScore W1992605514C2776214188 @default.
- W1992605514 hasConceptScore W1992605514C2777035058 @default.
- W1992605514 hasConceptScore W1992605514C33923547 @default.
- W1992605514 hasConceptScore W1992605514C41008148 @default.
- W1992605514 hasConceptScore W1992605514C51167844 @default.
- W1992605514 hasConceptScore W1992605514C62611344 @default.
- W1992605514 hasConceptScore W1992605514C65965080 @default.
- W1992605514 hasConceptScore W1992605514C66938386 @default.
- W1992605514 hasConceptScore W1992605514C70727504 @default.
- W1992605514 hasConceptScore W1992605514C80444323 @default.
- W1992605514 hasIssue "1" @default.
- W1992605514 hasLocation W19926055141 @default.
- W1992605514 hasLocation W19926055142 @default.
- W1992605514 hasLocation W19926055143 @default.
- W1992605514 hasOpenAccess W1992605514 @default.
- W1992605514 hasPrimaryLocation W19926055141 @default.
- W1992605514 hasRelatedWork W1501016332 @default.
- W1992605514 hasRelatedWork W1535265092 @default.
- W1992605514 hasRelatedWork W1565287552 @default.
- W1992605514 hasRelatedWork W2607887310 @default.
- W1992605514 hasRelatedWork W3010693052 @default.
- W1992605514 hasRelatedWork W3037630595 @default.
- W1992605514 hasRelatedWork W3096048486 @default.
- W1992605514 hasRelatedWork W4237379778 @default.