Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992662020> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W1992662020 endingPage "365" @default.
- W1992662020 startingPage "346" @default.
- W1992662020 abstract "Pseudo-independent ( PI ) models are a special class of probabilistic domain model ( PDM ) where a set of marginally independent domain variables shows collective dependency , a special type of dependency associated with the scope of a set of variables in a probabilistic domain. Due to this property, common probabilistic learning methods based on a single-link lookahead search cannot learn PI models. To learn PI models, a learning algorithm should be equipped with a search with its scope beyond a single link, which is called a multi-link lookahead search . An improved result can be obtained by incorporating model complexity into a scoring metric to explicitly trade off model accuracy for complexity and vice versa during selection of the best model among candidates at each learning step. To implement this scoring metric for learning PI models, the complexity formula for every class of PI models is required. Previous studies found the complexity formula for full PI models , one of the three major types of PI models (the other two are partial and mixed PI models ). This study presents the complexity formula for atomic partial PI models , partial PI models that contain no embedded PI submodels. This paper shows the complexity can be acquired by arithmetic operation with the cardinality of the space of domain variables in an atomic partial PI model. The new formula provides the basis for further characterizing the complexity of non-atomic PI models , which contain embedded PI submodels in their domains." @default.
- W1992662020 created "2016-06-24" @default.
- W1992662020 creator A5032903511 @default.
- W1992662020 creator A5079775806 @default.
- W1992662020 date "2007-10-01" @default.
- W1992662020 modified "2023-09-29" @default.
- W1992662020 title "Complexity measurement of fundamental pseudo-independent models" @default.
- W1992662020 cites W112199310 @default.
- W1992662020 cites W13093665 @default.
- W1992662020 cites W142587298 @default.
- W1992662020 cites W1558863764 @default.
- W1992662020 cites W1568586753 @default.
- W1992662020 cites W1604572656 @default.
- W1992662020 cites W1796467812 @default.
- W1992662020 cites W1896341954 @default.
- W1992662020 cites W1988814833 @default.
- W1992662020 cites W2008906462 @default.
- W1992662020 cites W2040018643 @default.
- W1992662020 cites W2158054785 @default.
- W1992662020 cites W2159080219 @default.
- W1992662020 cites W2169100420 @default.
- W1992662020 cites W2170112109 @default.
- W1992662020 cites W2462899966 @default.
- W1992662020 cites W30853191 @default.
- W1992662020 doi "https://doi.org/10.1016/j.ijar.2006.09.008" @default.
- W1992662020 hasPublicationYear "2007" @default.
- W1992662020 type Work @default.
- W1992662020 sameAs 1992662020 @default.
- W1992662020 citedByCount "1" @default.
- W1992662020 countsByYear W19926620202013 @default.
- W1992662020 crossrefType "journal-article" @default.
- W1992662020 hasAuthorship W1992662020A5032903511 @default.
- W1992662020 hasAuthorship W1992662020A5079775806 @default.
- W1992662020 hasBestOaLocation W19926620201 @default.
- W1992662020 hasConcept C11413529 @default.
- W1992662020 hasConcept C124101348 @default.
- W1992662020 hasConcept C134306372 @default.
- W1992662020 hasConcept C154945302 @default.
- W1992662020 hasConcept C162324750 @default.
- W1992662020 hasConcept C176217482 @default.
- W1992662020 hasConcept C177264268 @default.
- W1992662020 hasConcept C19768560 @default.
- W1992662020 hasConcept C199360897 @default.
- W1992662020 hasConcept C21547014 @default.
- W1992662020 hasConcept C2777212361 @default.
- W1992662020 hasConcept C33923547 @default.
- W1992662020 hasConcept C36503486 @default.
- W1992662020 hasConcept C41008148 @default.
- W1992662020 hasConcept C49937458 @default.
- W1992662020 hasConcept C80444323 @default.
- W1992662020 hasConcept C87117476 @default.
- W1992662020 hasConceptScore W1992662020C11413529 @default.
- W1992662020 hasConceptScore W1992662020C124101348 @default.
- W1992662020 hasConceptScore W1992662020C134306372 @default.
- W1992662020 hasConceptScore W1992662020C154945302 @default.
- W1992662020 hasConceptScore W1992662020C162324750 @default.
- W1992662020 hasConceptScore W1992662020C176217482 @default.
- W1992662020 hasConceptScore W1992662020C177264268 @default.
- W1992662020 hasConceptScore W1992662020C19768560 @default.
- W1992662020 hasConceptScore W1992662020C199360897 @default.
- W1992662020 hasConceptScore W1992662020C21547014 @default.
- W1992662020 hasConceptScore W1992662020C2777212361 @default.
- W1992662020 hasConceptScore W1992662020C33923547 @default.
- W1992662020 hasConceptScore W1992662020C36503486 @default.
- W1992662020 hasConceptScore W1992662020C41008148 @default.
- W1992662020 hasConceptScore W1992662020C49937458 @default.
- W1992662020 hasConceptScore W1992662020C80444323 @default.
- W1992662020 hasConceptScore W1992662020C87117476 @default.
- W1992662020 hasIssue "2" @default.
- W1992662020 hasLocation W19926620201 @default.
- W1992662020 hasOpenAccess W1992662020 @default.
- W1992662020 hasPrimaryLocation W19926620201 @default.
- W1992662020 hasRelatedWork W1186057354 @default.
- W1992662020 hasRelatedWork W136559200 @default.
- W1992662020 hasRelatedWork W1520268336 @default.
- W1992662020 hasRelatedWork W1534956872 @default.
- W1992662020 hasRelatedWork W2811492263 @default.
- W1992662020 hasRelatedWork W2950285904 @default.
- W1992662020 hasRelatedWork W2950484091 @default.
- W1992662020 hasRelatedWork W3006975234 @default.
- W1992662020 hasRelatedWork W4293572772 @default.
- W1992662020 hasRelatedWork W96812347 @default.
- W1992662020 hasVolume "46" @default.
- W1992662020 isParatext "false" @default.
- W1992662020 isRetracted "false" @default.
- W1992662020 magId "1992662020" @default.
- W1992662020 workType "article" @default.