Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992713566> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W1992713566 abstract "This paper presents a novel modular neural network called brain-like multi-hierarchical modular network (BMNN). Unlike most of the traditional modular neural network, the BMNN has a brain-like multi-hierarchical structure and uses a collaborative learning approach. In BMNN learning process, each input sample is learned by multiple sub-sub-modules in different sub-modules and the learning result of BMNN is the integration of the multiple sub-sub-modules learning results, which helps to improve the BMNN's learning accuracy and generalization ability. The learning algorithm of the sub-sub-modules is an algebraic method which greatly improves the BMNN's learning speed. Applied BMNN to mine gas concentration forecasting based on the practical production data, the forecasting results compared with BP neural network and RBF neural network, the experiment results show the validity of the proposed forecasting method and can provide the scientific decision for the safety in coal mine production." @default.
- W1992713566 created "2016-06-24" @default.
- W1992713566 creator A5028832818 @default.
- W1992713566 creator A5055432844 @default.
- W1992713566 date "2014-07-01" @default.
- W1992713566 modified "2023-09-23" @default.
- W1992713566 title "A brain-like multi-hierarchical modular neural network with applications to gas concentration forecasting" @default.
- W1992713566 cites W1969050738 @default.
- W1992713566 cites W2021947606 @default.
- W1992713566 cites W2022575851 @default.
- W1992713566 cites W2042771098 @default.
- W1992713566 cites W2045257906 @default.
- W1992713566 cites W2052055672 @default.
- W1992713566 cites W2066950481 @default.
- W1992713566 cites W2074477564 @default.
- W1992713566 cites W2098395403 @default.
- W1992713566 cites W2098732944 @default.
- W1992713566 cites W2100128988 @default.
- W1992713566 cites W2100714230 @default.
- W1992713566 cites W2110559404 @default.
- W1992713566 cites W2110569122 @default.
- W1992713566 cites W2111072639 @default.
- W1992713566 cites W2116444233 @default.
- W1992713566 cites W2131086551 @default.
- W1992713566 cites W2139237963 @default.
- W1992713566 cites W2142826891 @default.
- W1992713566 cites W2157082398 @default.
- W1992713566 cites W2164554122 @default.
- W1992713566 cites W2360724825 @default.
- W1992713566 doi "https://doi.org/10.1109/ijcnn.2014.6889501" @default.
- W1992713566 hasPublicationYear "2014" @default.
- W1992713566 type Work @default.
- W1992713566 sameAs 1992713566 @default.
- W1992713566 citedByCount "1" @default.
- W1992713566 countsByYear W19927135662020 @default.
- W1992713566 crossrefType "proceedings-article" @default.
- W1992713566 hasAuthorship W1992713566A5028832818 @default.
- W1992713566 hasAuthorship W1992713566A5055432844 @default.
- W1992713566 hasConcept C101468663 @default.
- W1992713566 hasConcept C111919701 @default.
- W1992713566 hasConcept C119857082 @default.
- W1992713566 hasConcept C134306372 @default.
- W1992713566 hasConcept C154945302 @default.
- W1992713566 hasConcept C175202392 @default.
- W1992713566 hasConcept C177148314 @default.
- W1992713566 hasConcept C2781121602 @default.
- W1992713566 hasConcept C33923547 @default.
- W1992713566 hasConcept C41008148 @default.
- W1992713566 hasConcept C50644808 @default.
- W1992713566 hasConcept C98045186 @default.
- W1992713566 hasConceptScore W1992713566C101468663 @default.
- W1992713566 hasConceptScore W1992713566C111919701 @default.
- W1992713566 hasConceptScore W1992713566C119857082 @default.
- W1992713566 hasConceptScore W1992713566C134306372 @default.
- W1992713566 hasConceptScore W1992713566C154945302 @default.
- W1992713566 hasConceptScore W1992713566C175202392 @default.
- W1992713566 hasConceptScore W1992713566C177148314 @default.
- W1992713566 hasConceptScore W1992713566C2781121602 @default.
- W1992713566 hasConceptScore W1992713566C33923547 @default.
- W1992713566 hasConceptScore W1992713566C41008148 @default.
- W1992713566 hasConceptScore W1992713566C50644808 @default.
- W1992713566 hasConceptScore W1992713566C98045186 @default.
- W1992713566 hasLocation W19927135661 @default.
- W1992713566 hasOpenAccess W1992713566 @default.
- W1992713566 hasPrimaryLocation W19927135661 @default.
- W1992713566 hasRelatedWork W2016271117 @default.
- W1992713566 hasRelatedWork W2132902392 @default.
- W1992713566 hasRelatedWork W2138265726 @default.
- W1992713566 hasRelatedWork W2146582295 @default.
- W1992713566 hasRelatedWork W2212569566 @default.
- W1992713566 hasRelatedWork W2388123479 @default.
- W1992713566 hasRelatedWork W2513133488 @default.
- W1992713566 hasRelatedWork W2538088269 @default.
- W1992713566 hasRelatedWork W2615696666 @default.
- W1992713566 hasRelatedWork W2747025018 @default.
- W1992713566 hasRelatedWork W2906715382 @default.
- W1992713566 hasRelatedWork W2907842626 @default.
- W1992713566 hasRelatedWork W2949301197 @default.
- W1992713566 hasRelatedWork W3037666998 @default.
- W1992713566 hasRelatedWork W3111900029 @default.
- W1992713566 hasRelatedWork W3205572126 @default.
- W1992713566 hasRelatedWork W3211802370 @default.
- W1992713566 hasRelatedWork W37674866 @default.
- W1992713566 hasRelatedWork W650260511 @default.
- W1992713566 hasRelatedWork W2183442073 @default.
- W1992713566 isParatext "false" @default.
- W1992713566 isRetracted "false" @default.
- W1992713566 magId "1992713566" @default.
- W1992713566 workType "article" @default.