Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992847144> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W1992847144 endingPage "6478" @default.
- W1992847144 startingPage "6459" @default.
- W1992847144 abstract "The Feynman inequality ${mathit{E}}_{mathit{G}}$ensuremath{le}${mathit{E}}_{mathrm{trial}}$+${mathrm{lim}}_{mathrm{ensuremath{beta}}ensuremath{rightarrow}mathrm{ensuremath{infty}}}$〈S-${mathit{S}}_{mathrm{trial}}$〉/ensuremath{beta} for path integrals provides a powerful upper bound on the ground-state energy ${mathit{E}}_{mathit{G}}$ of a large variety of systems. ${mathit{E}}_{mathrm{trial}}$ is the ground-state energy of some trial system with action ${mathit{S}}_{mathrm{trial}}$ for imaginary values of the time variable, and S is the action (also expressed in imaginary time variables) of the system under study. ensuremath{beta}=1/${mathit{k}}_{mathit{B}}$T, where ${mathit{k}}_{mathit{B}}$ is the Boltzmann constant and T the temperature. However, the Feynman inequality is not a priori justified for a system in a magnetic field, because imaginary terms subsist in the action also after transforming to imaginary time variables. Replacing or extending this inequality when magnetic fields are present has therefore been a long-standing problem. In the present paper we solve this problem. We first derive an inequality, providing an upper bound for the ground-state energy, that is valid even in the case of a nonzero magnetic field, ${mathrm{E}}_{mathrm{G}}$ensuremath{le}${mathrm{E}}_{mathrm{trial}}$+〈ensuremath{infty}ensuremath{Vert}scrT{${mathit{markU}}_{mathrm{trial}}$ (ensuremath{infty},-ensuremath{infty})[V(0)-${mathit{V}}_{mathrm{trial}}$(0)]}-ensuremath{infty}〉,for a system with Hamiltonian ${mathrm{H}}_{0}$+V. T time-ordering operator, and ${mathit{U}}_{mathrm{trial}}$ is the time evolution operator of a trial system with Hamiltonian ${mathit{H}}_{0}$+${mathit{V}}_{mathrm{trial}}$ in the interaction representation, with the interactions V(t) and ${mathit{V}}_{mathrm{trial}}$(t) switched on adiabatically. Because of the time ordering, retardation effects are also properly taken into account. The contribution of the magnetic field is included in the unperturbed Hamiltonian ${mathit{H}}_{0}$. If the time-dependent integrands occurring in the matrix element in the right-hand side of our generalized inequality satisfy certain analyticity conditions in the complex-time plane, this inequality reduces to the Feynman inequality for path integrals. If these analyticity conditions are not satisfied, our generalized inequality may introduce supplementary terms ${mathit{E}}^{mathrm{DB}}$ in the right-hand side of the Feynman upper bound, ${mathrm{E}}_{mathrm{G}}$ensuremath{le}${mathrm{E}}_{mathrm{t}mathbf{i}mathrm{al}}$+${mathrm{lim}}_{mathrm{ensuremath{beta}}ensuremath{rightarrow}mathrm{ensuremath{infty}}}$〈S-${mathit{S}}_{mathrm{trial}}$〉/ensuremath{beta} +${mathit{E}}^{mathrm{DB}}$,because different branch lines or singularities have to be taken into account in the transformation to imaginary time variables. As an important illustration, our generalized inequality is applied to the problem of the Frohlich polaron in a magnetic field. From the generalization of the Feynman an inequality derived in the present paper, we determine the conditions to be imposed on the variational parameters in the trial action, such that the Feynman upper bound in its original form remains valid for a polaron in a magnetic field. Some limiting cases are studied analytically to illustrate the relevance of our additional constraints on the variational parameters of the trial system. In the free-particle limit and for a particular value of one of the variational parameters, we explicitly derive the contributions from the branch lines in the complex-time plane which arise if these additional constraints are not satisfied." @default.
- W1992847144 created "2016-06-24" @default.
- W1992847144 creator A5007806494 @default.
- W1992847144 creator A5048847109 @default.
- W1992847144 date "1992-03-15" @default.
- W1992847144 modified "2023-09-26" @default.
- W1992847144 title "Extension to the case of a magnetic field of Feynman’s path-integral upper bound on the ground-state energy: Application to the Fröhlich polaron" @default.
- W1992847144 cites W1989342763 @default.
- W1992847144 cites W1997292629 @default.
- W1992847144 cites W2004865476 @default.
- W1992847144 cites W2013398717 @default.
- W1992847144 cites W2020441547 @default.
- W1992847144 cites W2026744463 @default.
- W1992847144 cites W2053171652 @default.
- W1992847144 cites W2066063415 @default.
- W1992847144 cites W2068809402 @default.
- W1992847144 cites W2074403051 @default.
- W1992847144 cites W2074800619 @default.
- W1992847144 cites W2078113267 @default.
- W1992847144 cites W2079198852 @default.
- W1992847144 cites W2122956815 @default.
- W1992847144 cites W2148481586 @default.
- W1992847144 cites W2227304090 @default.
- W1992847144 cites W4210885106 @default.
- W1992847144 doi "https://doi.org/10.1103/physrevb.45.6459" @default.
- W1992847144 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10000407" @default.
- W1992847144 hasPublicationYear "1992" @default.
- W1992847144 type Work @default.
- W1992847144 sameAs 1992847144 @default.
- W1992847144 citedByCount "19" @default.
- W1992847144 countsByYear W19928471442015 @default.
- W1992847144 crossrefType "journal-article" @default.
- W1992847144 hasAuthorship W1992847144A5007806494 @default.
- W1992847144 hasAuthorship W1992847144A5048847109 @default.
- W1992847144 hasConcept C114614502 @default.
- W1992847144 hasConcept C121332964 @default.
- W1992847144 hasConcept C126255220 @default.
- W1992847144 hasConcept C130787639 @default.
- W1992847144 hasConcept C134306372 @default.
- W1992847144 hasConcept C186370098 @default.
- W1992847144 hasConcept C33923547 @default.
- W1992847144 hasConcept C37914503 @default.
- W1992847144 hasConcept C62520636 @default.
- W1992847144 hasConcept C69523127 @default.
- W1992847144 hasConcept C77553402 @default.
- W1992847144 hasConceptScore W1992847144C114614502 @default.
- W1992847144 hasConceptScore W1992847144C121332964 @default.
- W1992847144 hasConceptScore W1992847144C126255220 @default.
- W1992847144 hasConceptScore W1992847144C130787639 @default.
- W1992847144 hasConceptScore W1992847144C134306372 @default.
- W1992847144 hasConceptScore W1992847144C186370098 @default.
- W1992847144 hasConceptScore W1992847144C33923547 @default.
- W1992847144 hasConceptScore W1992847144C37914503 @default.
- W1992847144 hasConceptScore W1992847144C62520636 @default.
- W1992847144 hasConceptScore W1992847144C69523127 @default.
- W1992847144 hasConceptScore W1992847144C77553402 @default.
- W1992847144 hasIssue "12" @default.
- W1992847144 hasLocation W19928471441 @default.
- W1992847144 hasLocation W19928471442 @default.
- W1992847144 hasOpenAccess W1992847144 @default.
- W1992847144 hasPrimaryLocation W19928471441 @default.
- W1992847144 hasRelatedWork W1784384613 @default.
- W1992847144 hasRelatedWork W1963926961 @default.
- W1992847144 hasRelatedWork W1981855692 @default.
- W1992847144 hasRelatedWork W1994172039 @default.
- W1992847144 hasRelatedWork W2018452082 @default.
- W1992847144 hasRelatedWork W2031152868 @default.
- W1992847144 hasRelatedWork W2055732145 @default.
- W1992847144 hasRelatedWork W2081149955 @default.
- W1992847144 hasRelatedWork W2315792575 @default.
- W1992847144 hasRelatedWork W3101235749 @default.
- W1992847144 hasVolume "45" @default.
- W1992847144 isParatext "false" @default.
- W1992847144 isRetracted "false" @default.
- W1992847144 magId "1992847144" @default.
- W1992847144 workType "article" @default.