Matches in SemOpenAlex for { <https://semopenalex.org/work/W1992893263> ?p ?o ?g. }
- W1992893263 endingPage "508" @default.
- W1992893263 startingPage "498" @default.
- W1992893263 abstract "The capability to simulate real gas flow in porous materials with micro- and nano-meter-scale pores is of importance in many applications, such as gas extraction from shale reservoirs, and the design of gas-based fuel cells. A node-bond pore-network flow model (PNFM) has been developed for gas flow where it is the only fluid phase. The flow conductance equation includes the usual Darcy flow terms, and additional terms that capture the contributions from slip flow to Knudsen diffusion. With respect to the case for a non-ideal gas, the extra contributions, which are necessary, to the coefficients of the Darcy and Knudsen terms, are expressed in terms of reduced temperature and pressure, using van der Waals’s two-parameter principle of corresponding states. Analysis on cylindrical pores shows that the coefficient deviates from that of the non-ideal gas case by more than 80% in the Darcy term, while between −80% and 150% in the Knudsen term, when the physical states approach to the critical state of the fluid. Although the deviations become smaller when the states are away from the critical state, they remain relatively large even at conditions relevant to practical applications. The model was applied to a pore network of a realistic 3D shale model to show slippage and Knudsen effects on the predicted permeability and the sensitivity to pore sizes. Simulations were carried out for methane under the operational conditions of typical shale-gas reservoirs, and nitrogen under the conditions of laboratory experiments. The results show that the ratio of gas and Darcy permeability correlates positively and strongly with the pore size but inversely with the gas pressure and Tangential Momentum Accommodation Coefficient (TMAC) in the slip term, which can impact gas permeability disproportionally. The results are in favour of controlling the rate of gas depressurisation to avoid early depletion in shale gas production. The methane permeability is shown to be 30% greater, relatively, than that when the ideal gas law is applied, even under normal field operational conditions, while the nitrogen permeability can only approximate the methane permeability within a certain range of field operational conditions when the slip flow is not dominating." @default.
- W1992893263 created "2016-06-24" @default.
- W1992893263 creator A5015153612 @default.
- W1992893263 creator A5030506628 @default.
- W1992893263 creator A5032407477 @default.
- W1992893263 creator A5033565145 @default.
- W1992893263 creator A5082445875 @default.
- W1992893263 date "2014-01-01" @default.
- W1992893263 modified "2023-10-14" @default.
- W1992893263 title "A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials" @default.
- W1992893263 cites W1637481809 @default.
- W1992893263 cites W1686669292 @default.
- W1992893263 cites W1724950349 @default.
- W1992893263 cites W1965555507 @default.
- W1992893263 cites W1966318367 @default.
- W1992893263 cites W1966799339 @default.
- W1992893263 cites W1977890233 @default.
- W1992893263 cites W1981636025 @default.
- W1992893263 cites W1986094355 @default.
- W1992893263 cites W1992734096 @default.
- W1992893263 cites W1993288443 @default.
- W1992893263 cites W1999127031 @default.
- W1992893263 cites W2002970864 @default.
- W1992893263 cites W2003969681 @default.
- W1992893263 cites W2007283787 @default.
- W1992893263 cites W2009637804 @default.
- W1992893263 cites W2009951639 @default.
- W1992893263 cites W2012893865 @default.
- W1992893263 cites W2013024796 @default.
- W1992893263 cites W2017669157 @default.
- W1992893263 cites W2023336793 @default.
- W1992893263 cites W2023972518 @default.
- W1992893263 cites W2024446193 @default.
- W1992893263 cites W2026632831 @default.
- W1992893263 cites W2027410293 @default.
- W1992893263 cites W2029159074 @default.
- W1992893263 cites W2029434326 @default.
- W1992893263 cites W2030248190 @default.
- W1992893263 cites W2030659223 @default.
- W1992893263 cites W2031380105 @default.
- W1992893263 cites W2031409368 @default.
- W1992893263 cites W2038122387 @default.
- W1992893263 cites W2041220870 @default.
- W1992893263 cites W2046732170 @default.
- W1992893263 cites W2047305972 @default.
- W1992893263 cites W2048441808 @default.
- W1992893263 cites W2062588605 @default.
- W1992893263 cites W2062799497 @default.
- W1992893263 cites W2070507199 @default.
- W1992893263 cites W2073505460 @default.
- W1992893263 cites W2074811076 @default.
- W1992893263 cites W2076078903 @default.
- W1992893263 cites W2089777037 @default.
- W1992893263 cites W2092952629 @default.
- W1992893263 cites W2093445429 @default.
- W1992893263 cites W2111536099 @default.
- W1992893263 cites W2122005342 @default.
- W1992893263 cites W2152133194 @default.
- W1992893263 cites W2156608310 @default.
- W1992893263 cites W2165854364 @default.
- W1992893263 cites W2169577049 @default.
- W1992893263 cites W3024642770 @default.
- W1992893263 doi "https://doi.org/10.1016/j.fuel.2013.08.041" @default.
- W1992893263 hasPublicationYear "2014" @default.
- W1992893263 type Work @default.
- W1992893263 sameAs 1992893263 @default.
- W1992893263 citedByCount "131" @default.
- W1992893263 countsByYear W19928932632014 @default.
- W1992893263 countsByYear W19928932632015 @default.
- W1992893263 countsByYear W19928932632016 @default.
- W1992893263 countsByYear W19928932632017 @default.
- W1992893263 countsByYear W19928932632018 @default.
- W1992893263 countsByYear W19928932632019 @default.
- W1992893263 countsByYear W19928932632020 @default.
- W1992893263 countsByYear W19928932632021 @default.
- W1992893263 countsByYear W19928932632022 @default.
- W1992893263 countsByYear W19928932632023 @default.
- W1992893263 crossrefType "journal-article" @default.
- W1992893263 hasAuthorship W1992893263A5015153612 @default.
- W1992893263 hasAuthorship W1992893263A5030506628 @default.
- W1992893263 hasAuthorship W1992893263A5032407477 @default.
- W1992893263 hasAuthorship W1992893263A5033565145 @default.
- W1992893263 hasAuthorship W1992893263A5082445875 @default.
- W1992893263 hasConcept C105569014 @default.
- W1992893263 hasConcept C120882062 @default.
- W1992893263 hasConcept C121332964 @default.
- W1992893263 hasConcept C121838276 @default.
- W1992893263 hasConcept C159985019 @default.
- W1992893263 hasConcept C165830589 @default.
- W1992893263 hasConcept C167191414 @default.
- W1992893263 hasConcept C183447037 @default.
- W1992893263 hasConcept C185592680 @default.
- W1992893263 hasConcept C192562407 @default.
- W1992893263 hasConcept C30342001 @default.
- W1992893263 hasConcept C41625074 @default.
- W1992893263 hasConcept C55493867 @default.
- W1992893263 hasConcept C57879066 @default.
- W1992893263 hasConcept C6648577 @default.