Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993300526> ?p ?o ?g. }
- W1993300526 endingPage "1258" @default.
- W1993300526 startingPage "1250" @default.
- W1993300526 abstract "Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is elucidated by introducing the “translation-free” molecular dynamics simulation. The isotropic pump-probe signal and the polarization anisotropy decay show fast transfer of the librational energy to the surrounding water molecules, followed by relaxation to the hot ground state. These theoretical methods do not require frequently used assumptions and can thus be called ab initio methods; together with multidimensional nonlinear spectroscopies, they provide powerful methods for examining the inter- and intramolecular details of water dynamics." @default.
- W1993300526 created "2016-06-24" @default.
- W1993300526 creator A5007756230 @default.
- W1993300526 creator A5070455314 @default.
- W1993300526 date "2009-05-26" @default.
- W1993300526 modified "2023-10-16" @default.
- W1993300526 title "Molecular Dynamics Simulation of Nonlinear Spectroscopies of Intermolecular Motions in Liquid Water" @default.
- W1993300526 cites W1553285572 @default.
- W1993300526 cites W1563494356 @default.
- W1993300526 cites W1576668315 @default.
- W1993300526 cites W1965312893 @default.
- W1993300526 cites W1966035771 @default.
- W1993300526 cites W1966650378 @default.
- W1993300526 cites W1975391438 @default.
- W1993300526 cites W1975762035 @default.
- W1993300526 cites W1976636184 @default.
- W1993300526 cites W1981235086 @default.
- W1993300526 cites W1981739010 @default.
- W1993300526 cites W1981764974 @default.
- W1993300526 cites W1991394389 @default.
- W1993300526 cites W1995645617 @default.
- W1993300526 cites W2004465195 @default.
- W1993300526 cites W2005606466 @default.
- W1993300526 cites W2007700073 @default.
- W1993300526 cites W2009096466 @default.
- W1993300526 cites W2010499880 @default.
- W1993300526 cites W2017111767 @default.
- W1993300526 cites W2017417570 @default.
- W1993300526 cites W2017805558 @default.
- W1993300526 cites W2021821096 @default.
- W1993300526 cites W2027191225 @default.
- W1993300526 cites W2027267398 @default.
- W1993300526 cites W2029584401 @default.
- W1993300526 cites W2029799575 @default.
- W1993300526 cites W2036757688 @default.
- W1993300526 cites W2037122475 @default.
- W1993300526 cites W2039022563 @default.
- W1993300526 cites W2040389959 @default.
- W1993300526 cites W2041367203 @default.
- W1993300526 cites W2041568073 @default.
- W1993300526 cites W2041931011 @default.
- W1993300526 cites W2046092966 @default.
- W1993300526 cites W2048963291 @default.
- W1993300526 cites W2049120247 @default.
- W1993300526 cites W2054134130 @default.
- W1993300526 cites W2055036655 @default.
- W1993300526 cites W2055046127 @default.
- W1993300526 cites W2058765280 @default.
- W1993300526 cites W2061402439 @default.
- W1993300526 cites W2061712640 @default.
- W1993300526 cites W2067140406 @default.
- W1993300526 cites W2069672553 @default.
- W1993300526 cites W2072225167 @default.
- W1993300526 cites W2073968024 @default.
- W1993300526 cites W2076417816 @default.
- W1993300526 cites W2076960131 @default.
- W1993300526 cites W2082032735 @default.
- W1993300526 cites W2093803255 @default.
- W1993300526 cites W2104756975 @default.
- W1993300526 cites W2105649724 @default.
- W1993300526 cites W2111623215 @default.
- W1993300526 cites W2118753407 @default.
- W1993300526 cites W2123463698 @default.
- W1993300526 cites W2123526681 @default.
- W1993300526 cites W2139097746 @default.
- W1993300526 cites W2148504379 @default.
- W1993300526 cites W2150603940 @default.
- W1993300526 cites W2344320103 @default.
- W1993300526 cites W2950129093 @default.
- W1993300526 cites W4238642012 @default.
- W1993300526 doi "https://doi.org/10.1021/ar900007s" @default.
- W1993300526 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19469530" @default.
- W1993300526 hasPublicationYear "2009" @default.
- W1993300526 type Work @default.
- W1993300526 sameAs 1993300526 @default.
- W1993300526 citedByCount "55" @default.
- W1993300526 countsByYear W19933005262012 @default.
- W1993300526 countsByYear W19933005262013 @default.
- W1993300526 countsByYear W19933005262014 @default.
- W1993300526 countsByYear W19933005262015 @default.
- W1993300526 countsByYear W19933005262016 @default.
- W1993300526 countsByYear W19933005262017 @default.
- W1993300526 countsByYear W19933005262018 @default.
- W1993300526 countsByYear W19933005262019 @default.
- W1993300526 countsByYear W19933005262020 @default.
- W1993300526 countsByYear W19933005262022 @default.
- W1993300526 countsByYear W19933005262023 @default.
- W1993300526 crossrefType "journal-article" @default.
- W1993300526 hasAuthorship W1993300526A5007756230 @default.
- W1993300526 hasAuthorship W1993300526A5070455314 @default.
- W1993300526 hasConcept C112887158 @default.
- W1993300526 hasConcept C120665830 @default.
- W1993300526 hasConcept C121332964 @default.
- W1993300526 hasConcept C147597530 @default.
- W1993300526 hasConcept C147724859 @default.
- W1993300526 hasConcept C153642686 @default.
- W1993300526 hasConcept C159467904 @default.
- W1993300526 hasConcept C166950319 @default.