Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993322011> ?p ?o ?g. }
- W1993322011 endingPage "750" @default.
- W1993322011 startingPage "741" @default.
- W1993322011 abstract "Modulation of K+ conductance of the inner mitochondrial membrane has been proposed to mediate preconditioning in ischemia-reperfusion injury. The mechanism is not entirely understood, but it has been linked to a decreased activation of mitochondrial permeability transition (mPT). In the present study K+ channel activity was mimicked by picomolar concentrations of valinomycin. Isolated brain mitochondria were exposed to continuous infusions of calcium. Monitoring of extramitochondrial Ca2+ and mitochondrial respiration provided a quantitative assay for mPT sensitivity by determining calcium retention capacity (CRC). Valinomycin and cyclophilin D inhibition separately and additively increased CRC. Comparable degrees of respiratory uncoupling induced by increased K+ or H+ conductance had opposite effects on mPT sensitivity. Protonophores dose-dependently decreased CRC, demonstrating that so-called mild uncoupling was not beneficial per se. The putative mitoKATP channel opener diazoxide did not mimic the effect of valinomycin. An alkaline matrix pH was required for mitochondria to retain calcium, but increased K+ conductance did not result in augmented ΔpH. The beneficial effect of valinomycin on CRC was not mediated by H2O2-induced protein kinase Cϵ activation. Rather, increased K+ conductance reduced H2O2 generation during calcium infusion. Lowering the osmolarity of the buffer induced an increase in mitochondrial volume and improved CRC similar to valinomycin without inducing uncoupling or otherwise affecting respiration. We propose that increased potassium conductance in brain mitochondria may cause a direct physiological effect on matrix volume inducing resistance to pathological calcium challenges. Modulation of K+ conductance of the inner mitochondrial membrane has been proposed to mediate preconditioning in ischemia-reperfusion injury. The mechanism is not entirely understood, but it has been linked to a decreased activation of mitochondrial permeability transition (mPT). In the present study K+ channel activity was mimicked by picomolar concentrations of valinomycin. Isolated brain mitochondria were exposed to continuous infusions of calcium. Monitoring of extramitochondrial Ca2+ and mitochondrial respiration provided a quantitative assay for mPT sensitivity by determining calcium retention capacity (CRC). Valinomycin and cyclophilin D inhibition separately and additively increased CRC. Comparable degrees of respiratory uncoupling induced by increased K+ or H+ conductance had opposite effects on mPT sensitivity. Protonophores dose-dependently decreased CRC, demonstrating that so-called mild uncoupling was not beneficial per se. The putative mitoKATP channel opener diazoxide did not mimic the effect of valinomycin. An alkaline matrix pH was required for mitochondria to retain calcium, but increased K+ conductance did not result in augmented ΔpH. The beneficial effect of valinomycin on CRC was not mediated by H2O2-induced protein kinase Cϵ activation. Rather, increased K+ conductance reduced H2O2 generation during calcium infusion. Lowering the osmolarity of the buffer induced an increase in mitochondrial volume and improved CRC similar to valinomycin without inducing uncoupling or otherwise affecting respiration. We propose that increased potassium conductance in brain mitochondria may cause a direct physiological effect on matrix volume inducing resistance to pathological calcium challenges." @default.
- W1993322011 created "2016-06-24" @default.
- W1993322011 creator A5006430479 @default.
- W1993322011 creator A5025616814 @default.
- W1993322011 creator A5042813784 @default.
- W1993322011 creator A5063104255 @default.
- W1993322011 creator A5063819703 @default.
- W1993322011 creator A5086342334 @default.
- W1993322011 date "2010-01-01" @default.
- W1993322011 modified "2023-10-17" @default.
- W1993322011 title "Increased Potassium Conductance of Brain Mitochondria Induces Resistance to Permeability Transition by Enhancing Matrix Volume" @default.
- W1993322011 cites W1480051253 @default.
- W1993322011 cites W1487808142 @default.
- W1993322011 cites W1489283017 @default.
- W1993322011 cites W1535995443 @default.
- W1993322011 cites W1548755019 @default.
- W1993322011 cites W1553698977 @default.
- W1993322011 cites W1597339748 @default.
- W1993322011 cites W1605182467 @default.
- W1993322011 cites W1920479129 @default.
- W1993322011 cites W1968112618 @default.
- W1993322011 cites W1973106821 @default.
- W1993322011 cites W1981778981 @default.
- W1993322011 cites W1981886269 @default.
- W1993322011 cites W1985730861 @default.
- W1993322011 cites W1991238715 @default.
- W1993322011 cites W1991490958 @default.
- W1993322011 cites W1997795490 @default.
- W1993322011 cites W1999631310 @default.
- W1993322011 cites W2009574988 @default.
- W1993322011 cites W2009812062 @default.
- W1993322011 cites W2014689439 @default.
- W1993322011 cites W2014996595 @default.
- W1993322011 cites W2015674735 @default.
- W1993322011 cites W2017742632 @default.
- W1993322011 cites W2021752587 @default.
- W1993322011 cites W2024104987 @default.
- W1993322011 cites W2025462015 @default.
- W1993322011 cites W2026259043 @default.
- W1993322011 cites W2029077404 @default.
- W1993322011 cites W2038504360 @default.
- W1993322011 cites W2047876380 @default.
- W1993322011 cites W2048053028 @default.
- W1993322011 cites W2048607634 @default.
- W1993322011 cites W2060605524 @default.
- W1993322011 cites W2061470010 @default.
- W1993322011 cites W2063175209 @default.
- W1993322011 cites W2063385957 @default.
- W1993322011 cites W2066735039 @default.
- W1993322011 cites W2071131691 @default.
- W1993322011 cites W2072564164 @default.
- W1993322011 cites W2074570665 @default.
- W1993322011 cites W2077209766 @default.
- W1993322011 cites W2078052761 @default.
- W1993322011 cites W2082782176 @default.
- W1993322011 cites W2084341511 @default.
- W1993322011 cites W2088629175 @default.
- W1993322011 cites W2092320280 @default.
- W1993322011 cites W2093173349 @default.
- W1993322011 cites W2094164804 @default.
- W1993322011 cites W2094172197 @default.
- W1993322011 cites W2096442918 @default.
- W1993322011 cites W2104258421 @default.
- W1993322011 cites W2116286593 @default.
- W1993322011 cites W2116721331 @default.
- W1993322011 cites W2124027170 @default.
- W1993322011 cites W2127864583 @default.
- W1993322011 cites W2136545895 @default.
- W1993322011 cites W2146217294 @default.
- W1993322011 cites W2147549945 @default.
- W1993322011 cites W2147714923 @default.
- W1993322011 cites W2147819622 @default.
- W1993322011 cites W2153298328 @default.
- W1993322011 cites W2168717950 @default.
- W1993322011 cites W2268175810 @default.
- W1993322011 cites W2280703635 @default.
- W1993322011 cites W4234087973 @default.
- W1993322011 cites W4239657713 @default.
- W1993322011 doi "https://doi.org/10.1074/jbc.m109.017731" @default.
- W1993322011 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2804223" @default.
- W1993322011 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19880514" @default.
- W1993322011 hasPublicationYear "2010" @default.
- W1993322011 type Work @default.
- W1993322011 sameAs 1993322011 @default.
- W1993322011 citedByCount "45" @default.
- W1993322011 countsByYear W19933220112012 @default.
- W1993322011 countsByYear W19933220112013 @default.
- W1993322011 countsByYear W19933220112014 @default.
- W1993322011 countsByYear W19933220112016 @default.
- W1993322011 countsByYear W19933220112017 @default.
- W1993322011 countsByYear W19933220112018 @default.
- W1993322011 countsByYear W19933220112019 @default.
- W1993322011 countsByYear W19933220112020 @default.
- W1993322011 countsByYear W19933220112021 @default.
- W1993322011 countsByYear W19933220112022 @default.
- W1993322011 countsByYear W19933220112023 @default.
- W1993322011 crossrefType "journal-article" @default.
- W1993322011 hasAuthorship W1993322011A5006430479 @default.