Matches in SemOpenAlex for { <https://semopenalex.org/work/W1993472802> ?p ?o ?g. }
- W1993472802 abstract "Click Here JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, B03303, doi:10.1029/2008JB005842, 2010 for Full Article Radial anisotropy and prior petrological constraints: A comparative study C. Beghein 1 Received 31 May 2008; revised 8 September 2009; accepted 6 October 2009; published 6 March 2010. [ 1 ] Radial seismic anisotropy models are traditionally obtained using empirical constraints based on laboratory experiments and petrological considerations. We tested the hypothesis that such petrological constraints affect the uppermost mantle models of S wave anisotropy using a statistical approach. In addition, we were able to determine which model features are constrained by the data and which are dominated by the prior. We focused on large-scale models and found that the most likely models obtained in both cases are highly correlated. This demonstrates that for the best data-fitting solution, the geometry of uppermost mantle radial anisotropy is not strongly affected by prior petrological constraints. The amplitude of the anomalies, however, can change significantly: The best data-fitting model obtained without petrological constraints displays stronger amplitudes than the one obtained with prior. This could become an issue when quantitatively interpreting seismic anisotropy models, and thus emphasizes the importance of accurately accounting for parameter uncertainties and trade-offs, and of understanding whether the seismic data or the prior constraints the model. We showed that model uncertainties are strongly affected by the prior as the relative RMS uncertainties were reduced by a factor of 2. In addition, we showed that while the model distributions are not necessarily Gaussian a priori, imposing petrological constraints can force the distributions to be narrower and more Gaussian-like, as expected from inverse theory. Finally, we demonstrated that the age dependence of seismic wave velocities is robust and independent of prior constraints. A similar age signal exists for anisotropy, but with larger uncertainties without prior constraints. Citation: Beghein, C. (2010), Radial anisotropy and prior petrological constraints: A comparative study, J. Geophys. Res., 115, B03303, doi:10.1029/2008JB005842. 1. Introduction [ 2 ] Accurately modeling mantle seismic anisotropy, that is the dependence of seismic wave velocity with the direction of propagation or polarization, can help us under- stand mantle deformation [Karato and Toriumi, 1989; Kendall, 2000; Becker et al., 2003], the coupling between lithosphere and asthenosphere [Silver and Holt, 2002; Becker et al., 2006b], mantle composition [Montagner and Anderson, 1989], rheology [Becker et al., 2008], and the net rotation of the lithosphere [Becker, 2008]. However, despite numerous efforts to model mantle seismic anisotropy over the past 20 years, uncertainties remain on its exact depth extent and lateral variations in the uppermost mantle, on its presence in the transition zone, and on its global nature in the D 00 layer [Fouch and Fischer, 1996; Montagner and Kennett, 1996; Ekstro¨m and Dziewonski, 1998; Lay et al., 1998; Trampert and van Heijst, 2002; Wookey et al., 2002; Gung et al., 2003; Panning and Romanowicz, 2006; Earth and Space Sciences Department, UCLA, Los Angeles, California, USA. Copyright 2010 by the American Geophysical Union. 0148-0227/10/2008JB005842$09.00 Beghein and Trampert, 2004a, 2004b; Beghein et al., 2006; Panning and Romanowicz, 2006; Zhou et al., 2006; Marone et al., 2007; Nettles and Dziewonski, 2008; Beghein et al., 2008]. [ 3 ] Discrepancies between models can arise for a variety of reasons. To fully describe Earth’s elastic properties one would ideally want to determine the 21 independent ele- ments of the fourth-order elastic stiffness tensor, at a given time and location inside Earth. In practice, this is challeng- ing because seismic data are only sensitive to subsets of those 21 elements [Tanimoto, 1986; Chen and Tromp, 2007; Beghein et al., 2008], and different types of data depend on different subsets of elastic coefficients [see summary tables in Chen and Tromp [2007] and Beghein et al. [2008]]. In addition, while some data, such as shear wave splitting measurements, can provide precise constraints on lateral changes in seismic anisotropy, their depth resolution is very poor. Surface wave and free oscillation data are better suited to constrain depth changes in structure, but their lateral resolution is lower than that of body waves. This can yield apparent discrepancies and make model comparisons diffi- cult. Moreover, three-dimensional models of seismic anisot- ropy are typically obtained by data inversion, which is often an ill-posed and ill-conditioned problem. This means that B03303 1 of 17" @default.
- W1993472802 created "2016-06-24" @default.
- W1993472802 creator A5089653076 @default.
- W1993472802 date "2010-03-06" @default.
- W1993472802 modified "2023-09-27" @default.
- W1993472802 title "Radial anisotropy and prior petrological constraints: A comparative study" @default.
- W1993472802 cites W1552025410 @default.
- W1993472802 cites W1564578099 @default.
- W1993472802 cites W1565768895 @default.
- W1993472802 cites W1572173672 @default.
- W1993472802 cites W1968505679 @default.
- W1993472802 cites W1972254378 @default.
- W1993472802 cites W1980450508 @default.
- W1993472802 cites W1984467270 @default.
- W1993472802 cites W1991036484 @default.
- W1993472802 cites W1991920564 @default.
- W1993472802 cites W1992536242 @default.
- W1993472802 cites W2000766983 @default.
- W1993472802 cites W2009135234 @default.
- W1993472802 cites W2010120187 @default.
- W1993472802 cites W2012173388 @default.
- W1993472802 cites W2013402314 @default.
- W1993472802 cites W2026562834 @default.
- W1993472802 cites W2033385054 @default.
- W1993472802 cites W2037999193 @default.
- W1993472802 cites W2041989170 @default.
- W1993472802 cites W2042762949 @default.
- W1993472802 cites W2043111011 @default.
- W1993472802 cites W2049793616 @default.
- W1993472802 cites W2054092349 @default.
- W1993472802 cites W2056128551 @default.
- W1993472802 cites W2060771449 @default.
- W1993472802 cites W2062156497 @default.
- W1993472802 cites W2062221814 @default.
- W1993472802 cites W2062670728 @default.
- W1993472802 cites W2064252656 @default.
- W1993472802 cites W2065457605 @default.
- W1993472802 cites W2074672857 @default.
- W1993472802 cites W2075464387 @default.
- W1993472802 cites W2079187415 @default.
- W1993472802 cites W2080072939 @default.
- W1993472802 cites W2081409230 @default.
- W1993472802 cites W2093055644 @default.
- W1993472802 cites W2095537363 @default.
- W1993472802 cites W2095915508 @default.
- W1993472802 cites W2096668626 @default.
- W1993472802 cites W2101299561 @default.
- W1993472802 cites W2102993538 @default.
- W1993472802 cites W2114024803 @default.
- W1993472802 cites W2114492757 @default.
- W1993472802 cites W2118028053 @default.
- W1993472802 cites W2119147579 @default.
- W1993472802 cites W2125796472 @default.
- W1993472802 cites W2127623896 @default.
- W1993472802 cites W2129247900 @default.
- W1993472802 cites W2132484871 @default.
- W1993472802 cites W2136215475 @default.
- W1993472802 cites W2136454979 @default.
- W1993472802 cites W2141350407 @default.
- W1993472802 cites W2142802536 @default.
- W1993472802 cites W2145963600 @default.
- W1993472802 cites W2151519173 @default.
- W1993472802 cites W2151552720 @default.
- W1993472802 cites W2153696514 @default.
- W1993472802 cites W2154976555 @default.
- W1993472802 cites W2155530152 @default.
- W1993472802 cites W2158165873 @default.
- W1993472802 cites W2163247537 @default.
- W1993472802 cites W2164602066 @default.
- W1993472802 cites W2166163695 @default.
- W1993472802 cites W2207005762 @default.
- W1993472802 cites W2502737846 @default.
- W1993472802 cites W3023383796 @default.
- W1993472802 cites W431927922 @default.
- W1993472802 doi "https://doi.org/10.1029/2008jb005842" @default.
- W1993472802 hasPublicationYear "2010" @default.
- W1993472802 type Work @default.
- W1993472802 sameAs 1993472802 @default.
- W1993472802 citedByCount "10" @default.
- W1993472802 countsByYear W19934728022013 @default.
- W1993472802 countsByYear W19934728022014 @default.
- W1993472802 countsByYear W19934728022015 @default.
- W1993472802 countsByYear W19934728022018 @default.
- W1993472802 countsByYear W19934728022021 @default.
- W1993472802 countsByYear W19934728022022 @default.
- W1993472802 crossrefType "journal-article" @default.
- W1993472802 hasAuthorship W1993472802A5089653076 @default.
- W1993472802 hasBestOaLocation W19934728022 @default.
- W1993472802 hasConcept C120665830 @default.
- W1993472802 hasConcept C121332964 @default.
- W1993472802 hasConcept C127313418 @default.
- W1993472802 hasConcept C8058405 @default.
- W1993472802 hasConcept C85725439 @default.
- W1993472802 hasConceptScore W1993472802C120665830 @default.
- W1993472802 hasConceptScore W1993472802C121332964 @default.
- W1993472802 hasConceptScore W1993472802C127313418 @default.
- W1993472802 hasConceptScore W1993472802C8058405 @default.
- W1993472802 hasConceptScore W1993472802C85725439 @default.
- W1993472802 hasIssue "B3" @default.
- W1993472802 hasLocation W19934728021 @default.